Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (8): 59-65.doi: 10.13560/j.cnki.biotech.bull.1985.2015.08.009
• Technique • Previous Articles Next Articles
Xing Zhaohui1, Su Yuelong2, Zhang Qi1, Ruan Xinyi1, Lin Yan1, Wang Xinze1, Kong Hainan1
Received:
2014-12-15
Online:
2015-08-21
Published:
2015-08-22
Xing Zhaohui, Su Yuelong, Zhang Qi, Ruan Xinyi, Lin Yan, Wang Xinze, Kong Hainan. Research Progress on Cellulase Immobilized by Magnetic Nanoparticles as Carriers[J]. Biotechnology Bulletin, 2015, 31(8): 59-65.
[1] Humbird D, Davis R, Tao L, et al, Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol:dilute-acid pretreatment and enzymatic hydrolysis of corn stover[R]. USA:National Renewable Energy Laboratory(NREL), 2011. [2] Jordan J, Kumar CSSR, Theegala C. Preparation and characterization of cellulase-bound magnetite nanoparticles[J]. Journal of Molecular Catalysis B:Enzymatic, 2011, 68(2):139-146. [3] Bornscheuer UT. Immobilizing enzymes:how to create more suitable biocatalysts[J]. Angewandte Chemie International Edition, 2003, 42(29):3336-3337. [4] Mateo C, Palomo JM, Fernandez-Lorente G, et al. Improvement of enzyme activity, stability and selectivity via immobilization techniques[J]. Enzyme and Microbial Technology, 2007, 40(6):1451-1463. [5] 王景林. 纤维素酶固定化的研究进展[J]. 生命科学, 1997, 9(3):116-118. [6] Nelson JM, Griffin EG. Adsorption of invertase[J]. Journal of the American Chemical Society, 1916, 38(5):1109-1115. [7] Hanefeld U, Gardossi L, Magner E. Understanding enzyme immobilisation[J]. Chemical Society Reviews, 2009, 38(2):453-468. [8] Mosbach K. Immobilized enzymes[J]. Trends in Biochemical Sciences, 1980, 5(1):1-3. [9] 徐莉, 侯红萍. 酶的固定化方法的研究进展[J]. 酿酒科技, 2010(1):86-89. [10] Sheldon RA. Enzyme immobilization:the quest for optimum performance[J]. Advanced Synthesis & Catalysis, 2007, 349(8- 9):1289-1307. [11] Wang S, Su P, Ding F, et al. Immobilization of cellulase on polyamidoamine dendrimer-grafted silica[J]. Journal of Molecular Catalysis B:Enzymatic, 2013, 89:35-40. [12] Tebeka IR, Silva AG, Petri DF. Hydrolytic activity of free and immobilized cellulase[J]. Langmuir, 2009, 25(3):1582-1587. [13] Safari Sinegani AA, Emtiazi G, Shariatmadari H. Sorption and immobilization of cellulase on silicate clay minerals[J]. J Colloid Interface Sci, 2005, 290(1):39-44. [14] Wu L, Yuan X, Sheng J. Immobilization of cellulase in nanofibrous PVA membranes by electrospinning[J]. Journal of Membrane Science, 2005, 250(1-2):167-173. [15] Kim J, Jia H, Wang P. Challenges in biocatalysis for enzyme-based biofuel cells[J]. Biotechnol Adv, 2006, 24(3):296-308. [16] Cipolatti EP, Silva MJA, Klein M, et al. Current status and trends in enzymatic nanoimmobilization[J]. Journal of Molecular Catalysis B:Enzymatic, 2014, 99:56-67. [17] Gokhale AA, Lu J, Lee I. Immobilization of cellulase on magnetoresponsive graphene nano-supports[J]. Journal of Molecular Catalysis B:Enzymatic, 2013, 90:76-86. [18] Mubarak NM, Wong JR, Tan KW, et al. Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes[J]. J Mol Catal B:Enzym, 2014, 107:124-131. [19] Suh WH, Suslick KS, Stucky GD, et al. Nanotechnology, nanotoxicology, and neuroscience[J]. Progress in Neurobiology, 2009, 87(3):133-170. [20] Ansari SA, Husain Q. Potential applications of enzymes immobiliz-ed on/in nano materials:A review[J]. Biotechnology Advances, 2012, 30(3):512-523. [21] Lupoi JS, Smith EA. Evaluation of nanoparticle-immobilized cell-ulase for improved ethanol yield in simultaneous saccharification and fermentation reactions[J]. Biotechnology and Bioenginee-ring, 2011, 108(12):2835-2843. [22] Tang ZX, Qian JQ, Shi LE. Characterizations of immobilized neutral lipase on chitosan nano-particles[J]. Materials Letters, 2007, 61(1):37-40. [23] 辛宝娟, 邢国文. 氧化铁磁性纳米粒子固定化酶[J]. 化学进展, 2010, 22(4):593-602. [24] Mehta RV, Upadhyay RV, Charles SW, et al. Direct binding of protein to magnetic particles[J]. Biotechnology Techniques, 1997, 11(7):493-496. [25] 王玫, 宋芳, 汪世龙, 等. 磁性纳米颗粒Fe 3 O 4 固定化纤维素酶的光谱学研究[J]. 光谱学与光谱分析, 2006(5):895-, 88. [26] 霍书豪, 许敬亮, 张猛, 等. Fe 3 O 4 纳米颗粒固定化纤维素酶的酶学特性研究[J]. 可再生能源, 2009(6):33-35, 40. [27] 霍书豪, 许敬亮, 庄新姝, 等. 超顺磁性纳米颗粒固定化纤维素酶初步研究[J]. 现代化工, 2009(S2):188-190. [28] Khoshnevisan K, Bordbar AK, Zare D, et al. Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determi-nation of its activity and stability[J]. Chemical Engineering Jou-rnal, 2011, 171(2):669-673. [29] Alftren J, Hobley TJ. Immobilization of cellulase mixtures on magnetic particles for hydrolysis of lignocellulose and ease of recycling[J]. Biomass and Bioenergy, 2014, 65:72-78. [30] Xu J, Huo S, Yuan Z, et al. Characterization of direct cellulase immobilization with superparamagnetic nanoparticles[J]. Biocatalysis and Biotransformation, 2011, 29(2-3):71-76. [31] Talbert JN, Goddard JM. Enzymes on material surfaces[J]. Colloids and Surfaces B:Biointerfaces, 2012, 93:8-19. [32] Zoungrana T, Norde W. Thermal stability and enzymatic activity of α-chymotrypsin adsorbed on polystyrene surfaces[J]. Colloids and Surfaces B:Biointerfaces, 1997, 9(3):157-167. [33] Šulek F, Drofenik M, Habulin M, et al. Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase[J]. J Magn Magn Mater, 2010, 322(2):179-185. [34] Lopez-Gallego F, Betancor L, Mateo C, et al. Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports[J]. Journal of Biotechnology, 2005, 119(1):70-75. [35] 李咏兰, 吕桂芬, 弓剑, 等. 纳米磁性微粒固定化纤维素酶及水解秸秆的研究[J]. 江西师范大学学报:自然科学版, 2011(6):574-578. [36] 廖红东, 袁丽, 童春义, 等. 基于聚乙烯醇/Fe 2 O 3 纳米颗粒的纤维素酶固定化[J]. 高等学校化学学报, 2008(8):1564-1568. [37] 张猛, 许敬亮, 张宇, 等. 氨基硅烷化磁性纳米微球固定化纤维素酶研究[J]. 太阳能学报, 2013(2):337-342. [38] 王秀玲, 顾银君, 庄虹, 等. 新型氨基化磁性树状分子纳米颗粒的制备与表征[J]. 化工新型材料, 2012(11):61-63. [39] Liao H, Chen D, Yuan L, et al. Immobilized cellulase by polyvinyl alcohol/Fe 2 O 3 magnetic nanoparticle to degrade microcrystalline cellulose[J]. Carbohydrate Polymers, 2010, 82(3):600-604. [40] Mao X, Guo G, Huang J, et al. A novel method to prepare chitosan powder and its application in cellulase immobilization[J]. J Chemi Technol Biotechnology, 2006, 81(2):189-195. [41] Liu X, Hu Q, Fang Z, et al. Magnetic chitosan nanocomposites:a useful recyclable tool for heavy metal ion removal[J]. Langmuir, 2008, 25(1):3-8. [42] 石浩明, 张树彪, 陈会英, 等. 壳聚糖/Fe 3 O 4 复合纳米颗粒的制备[J]. 大连民族学院学报, 2012(3):213-216. [43] 李冰, 邵海员, 黎锡流, 等. 磁性固定化纤维素酶的交联法制备及其磁致酶学性质[J]. 河南工业大学学报:自然科学版, 2006(6):10-14. [44] Zang L, Qiu J, Wu X, et al. Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization[J]. Industrial & Engineering Chemistry Research, 2014, 53(9):3448-3454. [45] 马云辉, 陈国, 赵珺. 壳聚糖包覆磁性纳米粒子的制备和表征以及蛋白质吸附特性[J]. 高分子学报, 2013(11):1369-1375. [46] Dincer A, Telefoncu A. Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads[J]. J Mol Catal B:Enzym, 2007, 45(1-2):10-14. [47] Jiang Y, Guo C, Xia H, et al. Magnetic nanoparticles supported ionic liquids for lipase immobilization:Enzyme activity in catalyzing esterification[J]. J Mol Catal B:Enzym, 2009, 58(1-4):103-109. [48] Podrepšek GH, Primožič M, Knez Ž, et al. Immobilization of cellulase for industrial production[J]. Chemical Engineering, 2012, 27:235-240. |
[1] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[2] | ZHANG Jing, ZHANG Hao-rui, CAO Yun, HUANG Hong-ying, QU Ping, ZHANG Zhi-ping. Research Progress in Thermophilic Microorganisms for Cellulose Degradation [J]. Biotechnology Bulletin, 2023, 39(6): 73-87. |
[3] | MA Yu-qian, SUN Dong-hui, YUE Hao-feng, XIN Jia-yu, LIU Ning, CAO Zhi-yan. Identification, Heterologous Expression and Functional Analysis of a GH61 Family Glycoside Hydrolase from Setosphaeria turcica with the Assisting Function in Degrading Cellulose [J]. Biotechnology Bulletin, 2023, 39(4): 124-135. |
[4] | ZHANG Kai-ping, LIU Yan-li, TU Mian-liang, LI Ji-wei, WU Wen-biao. Optimization of Producing Cellulase by Aspergillus fumigatus A-16 and Its Enzymatic Properties [J]. Biotechnology Bulletin, 2022, 38(9): 215-225. |
[5] | WANG Xin-guang, TIAN Lei, WANG En-ze, ZHONG Cheng, TIAN Chun-jie. Construction of Microbial Consortium for Efficient Degradation of Corn Straw and Evaluation of Its Degradation Effect [J]. Biotechnology Bulletin, 2022, 38(4): 217-229. |
[6] | ZHANG Gong-you, WANG Yi-han, GUO Min, ZHANG Ting-ting, WANG Bing, LIU Hong-mei. Isolation and Identification of a Cellulase-producing Endophytic Fungus in Paris polyphylla var. yunnanensis [J]. Biotechnology Bulletin, 2022, 38(2): 95-104. |
[7] | TANG Hao, SUN Can, LI Yuan-qiu, LUO Chao-bing. Screening and Genome Sequencing of Cellulytic Bacterium Raoultella ornithinolytica LL1 [J]. Biotechnology Bulletin, 2021, 37(6): 85-96. |
[8] | HU Fang, DONG Xu, SHI Chang-wei, WU Xue-dong. Progress in Ultrasound Intensification for Enzymatic Hydrolysis of Lignocellulose [J]. Biotechnology Bulletin, 2021, 37(10): 234-244. |
[9] | DAI Lu-mei, LI Tao, WU Hua-lian, WU Hou-bo, XIANG Wen-zhou. Total Carbohydrates and β-glucans Accumulation of Rhodosorus sp. SCSIO-45730 [J]. Biotechnology Bulletin, 2021, 37(1): 205-214. |
[10] | LIU Deng, LIU Jun-hong. Research Progress of Thermophilic Lignocellulase in Cellulose Ethanol Production [J]. Biotechnology Bulletin, 2020, 36(8): 185-193. |
[11] | FENG Guang-zhi, SHI Hui, LIU Bo, WU Yu-ting, WANG Yue-lin, SHI Yu. Screening and Identification of Cellulase-producing Strains Isolated from Crayfish Intestine [J]. Biotechnology Bulletin, 2020, 36(2): 65-70. |
[12] | YANG Bin, LI Xiao-bo, ZHOU Lin, OU Pei-yu, JIN Xiao-bao. Identification and Enzymatic Properties of Strain YB Simultaneously Secreting Highly Efficient Cellulase and Xylanase [J]. Biotechnology Bulletin, 2020, 36(2): 110-118. |
[13] | ZHANG Jia-shun, GAO Li-li, MA Jiang-shan, LIU Gao-qiang. Effect of Surfactant on Cellulase Hydrolysis and Its Mechanism [J]. Biotechnology Bulletin, 2019, 35(9): 11-20. |
[14] | LI Lin-chao, ZHANG Chao, DONG Qing, GUO Cheng, ZHOU Bo, GAO Zheng. Isolation and Identification of Cellulose Degrading Microorganisms in Composting Process [J]. Biotechnology Bulletin, 2019, 35(9): 165-171. |
[15] | YU Hui-juan, GUO Xia-li. Screening of Straw-degrading Bacteria and Study on Their Cellulose-degrading Performances [J]. Biotechnology Bulletin, 2019, 35(2): 58-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||