Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (2): 185-191.doi: 10.13560/j.cnki.biotech.bull.1985.2016.02.027
• Research report • Previous Articles Next Articles
CAO Shou-ying, BAI Chang-cun
Received:
2015-04-21
Online:
2016-02-24
Published:
2016-02-25
CAO Shou-ying, BAI Chang-cun. The Application of the PiggyBac Transposon System in mCherry-transgenic Danio rerio[J]. Biotechnology Bulletin, 2016, 32(2): 185-191.
[1]Ni J, Clark KJ, Fahrenkrug SC, et al.Transposon tools hopping in vertebrates[J].Brief Funct Genomic Proteomic, 2008, 7(6):444-453. [2]Xue YL, Xiao A, Wen L, et al.Generation and characterization of blood vessel specific EGFP transgenic zebrafish via Tol2 transposon mediated enhancer trap screen[J].Progress in Biochemistry and Biophysics, 2010, 37(7):720-727 . [3]Fraser MJ, Smith GE, Summers MD.Acquisition of host cell DNA sequences by baculoviruses:relationship between host DNA insertions and FP mutants of Autographa californica and Galleria mellonella nuclear polyhedrosis viruses[J].J Virol, 1983, 47(2):287-300. [4]Handler, AM.Use of the PiggyBac transposon for germ-line transformation of insects[J].Journal of Insect Biochemistry and Molecular Biology, 2002, 32(10):1211-1220. [5]Lobo N, Li X, Fraser MJ.Transposition of the PiggyBac element in embryos of Drosophila melanogaster, Aedes aegypti and Trichoplusia ni[J].Mol Gen Genet, 1999, 261(4-5):803-810. [6]Fraser MJ, Cary L, Boonvisudhi K, et al.Assay for movement of Lepidopteran Transposon IFP2 in insect cells using a baculovirus genome as a target DNA[J].Virology, 1995, 211(2):397-407. [7]Wimmer EA.Innovations:Applications of insect transgenesis[J].Nat Rev Genet, 2003, 4(3):225-232. [8]Ding S, Wu XH, Li G, et al.Efficient transposition of the PiggyBac(PB)transposon in mammalian cells and mice[J].Cell, 2005, 122(3):473-483. [9]Wu SCY, Meir YJJ, Coates CJ, et al.PiggyBac is a flexible and highly active transposon as compared to Sleeping Beauty, Tol2, and Mos1 in mammalian cells[J].Proc Natl Acad Sci USA, 2006, 103(41):15008-15013. [10]Woltjen K, Michael IP, Mohseni P, et al.PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells[J].Nature, 2009, 458(7239):766-770. [11]Nakanishi H, Higuchi Y, Kawakami S, et al.PiggyBac transposon-mediated long-term gene expression in mice[J].Mol Ther, 2010, 18(4):707-714. [12]杨欢欢, 魏峰, 刘全.PiggyBac转座子应用研究进展[J].动物医学进展, 2010, 31(12):91-94. [13]刘琳, 张美丽, 黄粤.DNA转座子在小鼠基因功能研究中的应用[J].遗传, 2011, 33(5):485-493. [14]钱秋杰, 车家倩, 叶露鹏.PiggyBac转座系统的功能改进及在哺乳动物中的应用[J].遗传, 2014, 36(10):965-973. [15]Lobo N, Fraser TS, Adams JA, et al.Interplasmid transposition demonstrates PiggyBac mobility in vertebrate species[J].Genetica, 2006, 128(13):347-357. [16]桂建芳.分子发育生物学研究的理想模式──斑马鱼[J].中国生物工程杂志, 1995, 15(3):30-33. [17]BalciunasD, Davidson AE, Sivasubbu S, et al.Enhancer trapping in zebrafish using theSleepingBeautytransposon[J].BMC Genomics, 2004, 5:62. [18]RazE, Luenen HG, Schaerringer B, et al.Transposition of the nematode Caenorhabditis elegansTc3element in the zebrafish Danio rerio[J].Curr Biol, 1998, 8(2):82-88. [19]吴芳, 叶星, 邹曙明, 等.Tgf2 转座系统在转RFP基因斑马鱼上的应用[J].中国水产科学, 2014, 21(4):647-654. [20] Fadool JM, Hartl DL, DowlingJE, et al.Transposition of themarin-erelement from Drosophila mauritiana in zebrafish[J].Proc Natl Acad Sci USA, 1998, 95(9):5182-5186. [21] KawakamiK, Koga A, Hori H, et al.Excision of thetol2transpos-able element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio[J].Gene, 1998, 225(1-2):17-22. [22] KawakamiK, Takeda H, Kawakami N, et al.A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish[J].Dev Cell, 2004, 7(1):133-144. [23]ParinovS, Kondrichin I, Korzh V, et al.Tol2transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo[J].Dev Dyn, 2004, 231(2):449-459. [24] Kotani T, Kawakami K.Misty somites, a maternal effect gene iden-tified by transposon-mediated insertional mutagenesis in zebrafish that is essential for the somite boundary maintenance[J].Dev Biol, 2008, 316(2):383-396. [25]NagayoshiS, Hayashi E, Abe G, et al.Insertional mutagenesis by theTol2transposon-mediated enhancer trap approach generated mutations in two developmental genes:tcf7 and synembryn-like[J].Development, 2008, 135(1):159-169. [26] DavidsonAE, Balciunas D, Mohn D, et al.Efficient gene delivery and gene expression in zebrafish using theSleepingBeautytransposon[J].Dev Biol, 2003, 263(2):191-202. [27] Sivasubbu S, Balciunas D, Davidson AE, et al.Gene-breakingtran-sposonmutagenesis reveals an essential role for histone H2afza in zebrafish larval development[J].Mech Dev, 2006, 123(7):513-529. [28]Clark KJ, Geurts AM, Bell JB, et al.Transposonvectorsfor gene-trap insertional mutagenesis in vertebrates[J].Genesis, 2004, 39(4):225-233. [29]Mátés L, Chuah MK, Belay E, et al.Molecular evolutionof a novel hyperactiveSleepingBeautytransposase enables robust stable gene transfer in vertebrates[J].Nat Genet, 2009, 41(6):753-761. [30]NewmanM, Lardelli M.A hyperactivesleepingbeautytransposase enhances transgenesis in zebrafish embryos[J].BMC Res Notes, 2010, 282(3):121-125. [31]Landrette SF, Cornett JC, Ni TK, et al.PiggyBac transposon somatic mutagenesis with an activated reporter and tracker(PB-SMART)for genetic screens in mice[J].PLoS One, 2011, 6(10):1-12. [32] Ni TK, Landrette SF, Bjornson RD, et al.Low-copy piggyBac tran-sposon mutagenesis in mice identifies genes driving melanoma[J].Proc Natl Acad Sci USA, 2013, 110(38):3640-3649. [33] Rad R, Ten Hoeve J, Wessels L, et al.A conditional piggyBac tran-sposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer[J].Nat Genet, 2015, 47(1):47-56. [34]Gayle S, Pan Y, Landrette S, et al.PiggyBac insertional mutagenesis screen identifies a role for nuclear RHOA in human ES Cell differentiation[J].Stem Cell Reports, 2015, 4(1):926-938. [35]Sato M.A combination of targeted toxin technology and the piggyBac-mediated gene transfer system enables efficient isolation of stable transfectants in nonhuman mammalian cells[J].Biotechnol J, 2014, 10(1):143-153. [36]Pettitt SJ, Tan EP, Yusa KH.PiggyBac transposon-based insertional mutagenesis in mouse haploid embryonic stem cells[J].Methods Mol Biol, 2015, 1239(1):15-28. [37] Cooney AL, Singh BK, Sinn PL.Hybrid Non-viral/Viral vector systems for improved piggyBac DNA transposon in vivo delivery[J].Mol Ther, 2015, 23(4):667-674. [38]Bonin CP, Mann RS.A piggyBac transposon gene trap for the analysis of gene expression and function in Drosophila[J].Genetics, 2004, 167(4):1801-1811. [39]Furushima K, Jang CW, Chen DW, et al.Insertional mutagenesis by a hybrid piggyBac and Sleeping Beauty transposon in the rat[J].Genetics, 2012, 192(4):1235-1248. [40]Balciunas D, Ekker SC.Trapping fish genes with transposons[J].Zebrafish, 2005, 1(4):335-341. [41]Kotani T, Nagayoshi S, Urasaki A, et al.Transposon-mediated gene trapping in zebrafish[J].Methods, 2010, 39(3):199-206. |
[1] | XU Kun, YANG Ai-jiang, HU Xia, ZOU Hai-tao, LI Bin, LIU Ji. Antimony Accumulation and Its Effect on Antioxidation System in Different Tissues of Danio rerio [J]. Biotechnology Bulletin, 2021, 37(4): 145-154. |
[2] | YUE Xin, YANG Ai-jiang, XU Peng, HU Xia, ZHU Huan-yi, BAO Xin. Effect of Antimony on the Enzyme Activity of Danio rerio [J]. Biotechnology Bulletin, 2019, 35(6): 99-106. |
[3] | LÜ Peng, XU Jia-qing, WANG Sen, YAN Yan-chun. Studies on Acute Toxicity and Oxidative Stress of Benzisothiazolin to Danio rerio Embryos [J]. Biotechnology Bulletin, 2018, 34(1): 172-182. |
[4] | WU Yu-qiong, CHEN Ying, HU Yong-le, ZUO Zheng-hong, WANG Chong-gang. Toxic Effects of Four Currently-used Pesticides on Zebrafish Embryonic Development [J]. Biotechnology Bulletin, 2017, 33(6): 155-161. |
[5] | LIU Shuai-jun SHEN Dan ZHONG Ji-han CHEN Wei WANG Wei ZHANG Li CHEN Cai, YANG Kun-lun GAO Bo SONG Cheng-yi. The Annotation of Enhancer-trapping Mediated by the SB Transposon in Zebrafish [J]. Biotechnology Bulletin, 2017, 33(5): 153-158. |
[6] | LIN Jin-xing1, YANG Chi1, 2, FENG Li-ping1, HU Jian-hua1. Identification of Aeromonas hydrophila and Histopathological Observation of Artificial Infected Zebrafish [J]. Biotechnology Bulletin, 2016, 32(9): 239-245. |
[7] | HE Li-fan ,GAO Hai. The Regulation of Mecp2 on Notch Signaling Pathway During Early Neural Development of Zebrafish Embryos [J]. Biotechnology Bulletin, 2016, 32(4): 228-233. |
[8] | YANG Chuan, HU Min. Prokaryotic Expression and Purification of Zebrafish SFPQ [J]. Biotechnology Bulletin, 2016, 32(1): 163-168. |
[9] | WANG Dong-mei, GU Cong-you, LIU Tong, ZHANG Qiong-yu, LI Pei, HU Xiao-jun. The Deleterious Effects of Norfloxacin on Zebrafish Embryonic Development and TGF-β1 Expression [J]. Biotechnology Bulletin, 2016, 32(1): 169-173. |
[10] | Yu Kaimin, Feng Weimin, Li Guochao, Zhang Jiayu, Liu Lili, Yan Yanchun. An Analysis of Environmental and Biological Effects of Chlorpyrifos [J]. Biotechnology Bulletin, 2015, 31(8): 225-230. |
[11] | Li Guochao, Yu Kaimin, Feng Weimin, Liu Lili, Zhang Jiayu, Yan Yanchun. Effects of 17β-estradiol on the Sex Differentiation of Zebrafish(Danio rerio) [J]. Biotechnology Bulletin, 2015, 31(6): 200-208. |
[12] | Yuan Meng, He Zhixu, Shu Liping, Yuan Jiakan, Liu Feng, Li Yan. Genome Editing of Zebrafish hoxb4 Gene Using CRISPR/Cas9 System and Its Mutant Screening [J]. Biotechnology Bulletin, 2015, 31(10): 249-254. |
[13] | Tao Ran, Chang Yumei, Liang Liqun, Tang Ran, Dou Xinjie, Wang Nan, Li Mingyun,. Tgf2 Transposon Multiple Cloning Sites Cloning and Expression [J]. Biotechnology Bulletin, 2014, 0(2): 124-129. |
[14] | Wang Jian, Liu Lili, Yu Kaimin, Li Guochao, Wu Wei, Yan Yanchun. Toxicity of Beta-cypermethrin for Zebrafish Embryos [J]. Biotechnology Bulletin, 2014, 0(10): 223-229. |
[15] | Liu Lili, Wang Jian, Wu Wei, Wang Haisheng, Yan Yanchun. Application of Zebrafish in Research of Transgenic Organisms [J]. Biotechnology Bulletin, 2013, 0(2): 15-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||