[1]Saiyood S, Vangnai AS, Thiravetyan P, et al. Bisphenol A removal by the Dracaena plant and the role of plant-associating bacteria[J]. Journal of Hazardous Materials, 2010, 178(1):777-785. [2]Mita L, Grumiro L, Rossi S, et al. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor[J]. Journal of Hazardous Materials, 2015, 291:129-135. [3]Hou CH, Huang SC, Chou PH, et al. Removal of bisphenol A from aqueous solutions by electrochemical polymerization on a carbon aerogel electrode[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015. DOI:10. 1016/j. jtice. 2015. 01. 009. [4]Zielińska M, Cydzik-Kwiatkowska A, Bernat K, et al. Removal of bisphenol A(BPA)in a nitrifying system with immobilized biomass[J]. Bioresource Technology, 2014, 171:305-313. [5]Yüksel S, Kabay N, Yüksel M. Removal of bisphenol A(BPA)from water by various nanofiltration(NF)and reverse osmosis(RO)membranes[J]. J Hazard Mater, 2013, 263:307-310. [6]Pant J, Deshpande SB. Acute toxicity of Bisphenol A in rats[J]. Indian J Exp Biol, 2012, 50(6):425-429. [7]Sigma-Aldrich, 2004. Material safety data sheet. BPA, 04/09/2004 [8]Vogel SA. The politics of plastics:the making and unmaking of bisphenol a “safety”[J]. American Journal of Public Health, 2009, 99(S3):S559-S566. [9]Fan SX, Li PJ, Na H, et al. Phytoremediation progress of PAHs contaminated soil[J]. Agricultural Environmental Science, 2008, 26(6):2007-2013. [10]Loffredo E, Gattullo CE, Traversa A, et al. Potential of various herbaceous species to remove the endocrine disruptor bisphenol A from aqueous media[J]. Chemosphere, 2010, 11:1274-1280. [11]Ferrara G, Loffredo E, Senesi N. Phytotoxic, clastogenic and bioaccumulation effects of the environmental endocrine disruptor bisphenol A in various crops grown hydroponically[J]. Planta, 2006, 223(5):910-916. [12]Lu J, Wu J, Stoffella PJ, et al. Uptake and distribution of bisphenol A and nonylphenol in vegetable crops irrigated with reclaimed water[J]. Journal of Hazardous Materials, 2015, 283:865-870. [13]Qiu Z, Wang L, Zhou Q. Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings[J]. Chemosphere, 2013, 90(3):1274-1280. [14]Zhang GZ, Lin JS, Li YJ, et al. Plant hormones glycosylation progress[J]. Plant, 2014, 5:002. [15]Lim EK, Bowles DJ. A class of plant glycosyltransferases involved in cellular homeostasis[J]. The EMBO Journal, 2004, 23(15):2915-2922. [16]Bowles D, Isayenkova J, Lim EK, et al. Glycosyltransferases:managers of small molecules[J]. Current Opinion in Plant Biology, 2005, 8(3):254-263. [17]Hamada H, Tomi R, Asada Y, et al. Phytoremediation of bisphenol A by cultured suspension cells of Eucalyptus perriniana-regioselective hydroxylation and glycosylation[J]. Tetrahedron Letters, 2002, 43(22):4087-4089. [18]Nakajima N, Ohshima Y, Serizawa S, et al. Processing of bisphenol A by plant tissues:glucosylation by cultured BY-2 cells and glucosylation/translocation by plants of Nicotiana tabacum[J]. Plant and Cell Physiology, 2002, 43(9):1036-1042. [19]Nakajima N, Oshima Y, Edmonds J S, et al. Glycosylation of bisphenol A by tobacco BY-2 cells[J]. Phytochemistry, 2004, 65(10):1383-1387. [20]Schmidt B, Schuphan I. Metabolism of the environmental estrogen bisphenol A by plant cell suspension cultures[J]. Chemosphere, 2002, 49(1):51-59. [21]Ferrara G, Loffredo E, Senesi N. Phytotoxic, clastogenic and bioaccumulation effects of the environmental endocrine disruptor bisphenol A in various crops grown hydroponically[J]. Planta, 2006, 223(5):910-916. [22]Lin DH, Zhu LZ, Gao YZ. Mechanism and affecting factors of phytoremediation of organic contaminated soil[J]. Journal of Applied Ecology, 2003, 14(10):1799-1803. [23]Okuhata H, Ikeda K, Miyasaka H, et al. Floricultural salvia plants have a high ability to eliminate bisphenol A[J]. Journal of Bioscience and Bioengineering, 2010, 110(1):99-101. [24]Toyama T, Furukawa T, Maeda N, et al. Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria-root exudate interactions[J]. Water Research, 2011, 45(4):1629-1638. [25]Imai S, Shiraishi A, Gamo K, et al. Removal of phenolic endocrine disruptors by Portulaca oleracea[J]. Journal of Bioscience and Bioengineering, 2007, 103(5):420-426. [26]Schnoor JL, Light LA, McCutcheon SC, et al. Phytoremediation of organic and nutrient contaminants[J]. Environmental Science & Technology, 1995, 29(7):318A-323A. [27]Wu L K, Lin XM, Lin WX. Prospects and progress for root exudates mediated plant-soil-microbes interaction[J]. Journal of Plant Ecology, 2014, 38(3):298-310. [28]He H, Wang ZW, Hu B, et al. Progress of root exudates and rhizosphere microorganisms interaction[J]. Hebei Agricultural Sciences, 2011, 15(3):69-73. [29]Saiyood S, Vangnai AS, Thiravetyan P, et al. Bisphenol A removal by the Dracaena plant and the role of plant-associating bacteria[J]. J Hazard Mater, 2010, 178(1):777-785. [30]Ho YN, Mathew DC, Hsiao SC, et al. Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants[J]. Journal of Hazardous Materials, 2012, 219:43-49. [31]Toyama T, Sato Y, Inoue D, et al. Biodegradation of bisphenol A and bisphenol F in the rhizosphere sediment of Phragmites australis[J]. J Biosci Bioeng, 2009, 108(2):147-150. [32]Saiyood S, Inthorn D, Vangnai AS, et al. Phytoremediation of bisphenol A and total dissolved solids by the mangrove plant, Bruguiera gymnorhiza[J]. International Journal of Phytoremediation, 2013, 15(5):427-438. [33]Okuhata H, Ninagawa M, Takemoto N, et al. Phytoremediation of 4, 4'-thiodiphenol(TDP)and other bisphenol derivatives by Portulaca oleracea cv[J]. Journal of Bioscience and Bioengineering, 2013, 115(1):55-57. [34]Reis AR, Tabei K, Sakakibara Y. Oxidation mechanism and overall removal rates of endocrine disrupting chemicals by aquatic plants[J]. Journal of Hazardous Materials, 2014, 265:79-88. [35]Dodgen LK, Li J, Parker D, et al. Uptake and accumulation of four PPCP/EDCs in two leafy vegetables[J]. Environmental Pollution, 2013, 182:150-156. [36]Yang L, Li Z, Zou L, et al. Removal capacity and pathways of phenolic endocrine disruptors in an estuarine wetland of natural reed bed[J]. Chemosphere, 2011, 83(3):233-239. |