Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (9): 14-22.doi: 10.13560/j.cnki.biotech.bull.1985.2016.09.003
Previous Articles Next Articles
LIU li-juan, GAO Hui
Received:
2016-03-03
Online:
2016-09-25
Published:
2016-10-10
LIU li-juan, GAO Hui. Research Progress on the Family of TCP Genes[J]. Biotechnology Bulletin, 2016, 32(9): 14-22.
[1] Kosugi S, Ohashi Y. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene[J]. The Plant Cell Online, 1997, 9(9):1607-1619. [2] Cubas P, Lauter N, Doebley J, et al. The TCP domain:a motif found in proteins regulating plant growth and development[J]. The Plant Journal, 1999, 18(2):215-222. [3] Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize[J]. 1997: [4] Luo D, Carpenter R, Vincent C, et al. Origin of floral asymmetry in Antirrhinum[J]. Nature, 1996, 383(6603):794-799. [5] Floyd SK, Bowman JL. The ancestral developmental tool kit of land plants[J]. International Journal of Plant Sciences, 2007, 168(1):1-35. [6] Navaud O, Dabos P, Carnus E, et al. TCP transcription factors predate the emergence of land plants[J]. Journal of Molecular Evolution, 2007, 65(1):23-33. [7] Citerne HL, Luo D, Pennington RT, et al. A phylogenomic investig-ation of CYCLOIDEA-like TCP genes in the Leguminosae[J]. Plant Physiology, 2003, 131(3):1042-1053. [8] Cubas P. Role of TCP genes in the evolution of morphological characters in angiosperms[J]. Systematics Association Special Volume, 2002, 65:247-266. [9] Damerval C, Le Guilloux M, Jager M, et al. Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae[J]. Plant Physiology, 2007, 143(2):759-772. [10] Gübitz T, Caldwell A, Hudson A. Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives[J]. Molecular Biology and Evolution, 2003, 20(9):1537-1544. [11] Howarth DG, Donoghue MJ. Phylogenetic analysis of the “ECE”(CYC/TB1)clade reveals duplications predating the core eudicots[J]. Proceedings of the National Academy of Sciences, 2006, 103(24):9101. [12] Kölsch A, Gleissberg S. Diversification of CYCLOIDEA-like TCP genes in the basal eudicot families Fumariaceae and Papaveraceaes. str[J]. Plant Biology, 2006, 8(5):680-687. [13] Reeves PA, Olmstead RG. Evolution of the TCP gene family in Asteridae:cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution[J]. Molecular Biology and Evolution, 2003, 20(12):1997-2009. [14] Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499):2105. [15] Xiong Y, Liu T, Tian C, et al. Transcription factors in rice:a genome-wide comparative analysis between monocots and eudicots[J]. Plant Molecular Biology, 2005, 59(1):191-203. [16] Yao X, Ma H, Wang J, et al. Genome-Wide Comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa[J]. Journal of Integrative Plant Biology, 2007, 49(6):885-897. [17] Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family[J]. The Plant Journal, 2002, 30(3):337-348. [18] Palatnik JF, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955):257-263. [19] Crawford BCW, Nath U, Carpenter R, et al. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum[J]. Plant Physiology, 2004, 135(1):244-253. [20] Efroni I, Blum E, Goldshmidt A, et al. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development[J]. The Plant Cell Online, 2008, 20(9):2293-2306. [21] Koyama T, Furutani M, Tasaka M, et al. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis[J]. The Plant Cell Online, 2007, 19(2):473-484. [22] Nath U, Crawford BCW, Carpenter R, et al. Genetic control of surface curvature[J]. Science, 2003, 299(5611):1404. [23] Ori N, Cohen AR, Etzioni A, et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato[J]. Nature Genetics, 2007, 39(6):787-791. [24] Schommer C, Palatnik JF, Aggarwal P, et al. Control of jasmonate biosynthesis and senescence by miR319 targets[J]. PLoS Biology, 2008, 6(9):e230. [25] Hu WJ, Zhang SH, Zhao Z, et al. The analysis of the structure and expression of OsTB1 gene in rice[J]. Journal of Plant Physiology and Molecular Biology, 2003, 29(6):507-514. [26] Hubbard L, McSteen P, Doebley J, et al. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte[J]. Genetics, 2002, 162(4):1927. [27] Lewis JM, Mackintosh CA, Shin S, et al. Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development[J]. Plant Cell Reports, 2008, 27(7):1217-1225. [28] Peng HZ, Lin EP, Sang QL, et al. Molecular cloning, expression analyses and primary evolution studies of REV-and TB1-like genes in bamboo[J]. Tree Physiology, 2007, 27(9):1273-1281. [29] Takeda T, Suwa Y, Suzuki M, et al. The OsTB1 gene negatively regulates lateral branching in rice[J]. The Plant Journal, 2003, 33(3):513-520. [30] Yuan Z, Gao S, Xue DW, et al. RETARDED PALEA1 controls palea development and floral zygomorphy in rice[J]. Plant Physiology, 2009, 149(1):235-244. [31] Aguilar-Martínez JA, Poza-Carrión C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. The Plant Cell Online, 2007, 19(2):458-472. [32] Finlayson SA. Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1[J]. Plant and Cell Physiology, 2007, 48(5):667. [33] Poza-Carrión C, Aguilar-Martínez JA, Cubas P. Role of TCP gene BRANCHED1 in the control of shoot branching in Arabidopsis[J]. Plant Signaling & Behavior, 2007, 2(6):551. [34] Cubas P. Floral zygomorphy, the recurring evolution of a successful trait[J]. Bio Essays, 2004, 26(11):1175-1184. [35] Jabbour F, Nadot S, Damerval C. Evolution of floral symmetry:a state of the art[J]. Comptes Rendus Biologies, 2009, 332(2-3):219-231. [36] Preston JC, Hileman LC. Developmental genetics of floral symmetry evolution[J]. Trends in Plant Science, 2009, 14(3):147-154. [37] Feng X, Zhao Z, Tian Z, et al. Control of petal shape and floral zygomorphy in Lotus japonicus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(13):4970. [38] Fukuda T, Yokoyama J, Maki M. Molecular evolution of cycloidea-like genes in Fabaceae[J]. Journal of Molecular Evolution, 2003, 57(5):588-597. [39] Qin LJ, Guo XZ, Feng XZ, et al. Cloning of LjCYC1 gene and nuclear localization of LjCYC1 protein in Lotus japonicus[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(5):523-532. [40] Wang Z, Luo Y, Li X, et al. Genetic control of floral zygomorphy in pea(Pisum sativum L. )[J]. Proceedings of the National Academy of Sciences, 2008, 105(30):10414. [41] Broholm SK, Tähtiharju S, Laitinen RAE, et al. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera(Asteraceae)inflorescence[J]. Proceedings of the National Academy of Sciences, 2008, 105(26):9117. [42] Chapman MA, Leebens-Mack JH, Burke JM. Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family[J]. Molecular Biology and Evolution, 2008, 25(7):1260-1273. [43] Kim M, Cui ML, Cubas P, et al. Regulatory genes control a key morphological and ecological trait transferred between species[J]. Science, 2008, 322(5904):1116. [44] Citerne HL, Möller M, Cronk QCB. Diversity of cycloidea-like genes in Gesneriaceae in relation to floral symmetry[J]. Annals of Botany, 2000, 86(1):167. [45] Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry[J]. Nature, 1999, 401(6749):157-161. [46] Du ZY, Wang YZ. Significance of RT-PCR expression patterns of CYC-like genes in Oreocharis benthamii(Gesneriaceae)[J]. Journal of Systematics and Evolution, 2008, 46(1):23-31. [47] Gao Q, Tao JH, Yan D, et al. Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha(Gesneriaceae)[J]. Development Genes and Evolution, 2008, 218(7):341-351. [48] Hileman LC, Baum DA. Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae(Veronicaceae)[J]. Molecular Biology and Evolution, 2003, 20(4):591-600. [49] Hileman LC, Kramer EM, Baum DA. Differential regulation of symmetry genes and the evolution of floral morphologies[J]. Proceedings of the National Academy of Sciences, 2003, 100(22):12814. [50] Luo D, Carpenter R, Copsey L, et al. Control of organ asymmetry in flowers of Antirrhinum[J]. Cell, 1999, 99(4):367-376. [51] Moller M, Clokie M, Cubas P, et al. Integrating molecular phylogenies and developmental genetics:a Gesneriaceae case study[M]. Francis, London:Molecular Systematics and Plant Evolution. Taylor and 1999:375-402. [52] Picó F, Möller M, Ouborg N, et al. Single nucleotide polymorphisms in the coding region of the developmental gene Gcyc in natural populations of the relict Ramonda myconi(Gesneriaceae)[J]. Plant Biology, 2002, 4(5):625-629. [53] Preston JC, Kost MA, Hileman LC. Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies[J]. New Phytologist, 2009, 182(3):751-762. [54] Smith JF, Hileman LC, Powell MP, et al. Evolution of GCYC, a Gesneriaceae homolog of CYCLOIDEA, within Gesnerioideae(Gesneriaceae)[J]. Molecular Phylogenetics and Evolution, 2004, 31(2):765-779. [55] Song CF, Lin QB, Liang RH, et al. Expressions of ECE-CYC2 clade genes relating to abortion of both dorsal and ventral stamens in Opithandra(Gesneriaceae)[J]. BMC Evolutionary Biology, 2009, 9(1):244. [56] Vieira CP, Vieira J, Charlesworth D. Evolution of the cycloidea gene family in Antirrhinum and Misopates[J]. Molecular Biology and Evolution, 1999, 16(11):1474-1483. [57] Wang CN, Möller M, Cronk QCB. Phylogenetic position of Titanotrichum oldhamii(Gesneriaceae)inferred from four different gene regions[J]. Systematic Botany, 2004, 29(2):407-418. [58] Wang L, Gao Q, Wang YZ, et al. Isolation and sequence analysis of two CYC-like genes, SiCYC1A and SiCYC1B, from zygomorphic and actinomorphic cultivars of Saintpaulia ionantha(Gesneriaceae)[J]. Acta Phytotaxonomica Sinica, 2006, 44(4):353-361. [59] Zhou XR, Wang YZ, Smith JF, et al. Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea(Gesneriaceae)[J]. New Phytologist, 2008, 178(3):532-543. [60] Hervé C, Dabos P, Bardet C, et al. In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development[J]. Plant Physiology, 2009, 149(3):1462-1477. [61] Li C, Potuschak T, Colón-Carmona A, et al. Arabidopsis TCP20 links regulation of growth and cell division control pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36):12978. [62] Pruneda-Paz JL, Breton G, Para A, et al. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock[J]. Science, 2009, 323(5920):1481. [63] Trémousaygue D, Garnier L, Bardet C, et al. Internal telomeric repeats and ‘TCP domain’protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells[J]. The Plant Journal, 2003, 33(6):957-966. [64] Welchen E, Gonzalez DH. Overrepresentation of elements recognized by TCP-domain transcription factors in the upstream regions of nuclear genes encoding components of the mitochondrial oxidative phosphorylation machinery[J]. Plant Physiology, 2006, 141(2):540-545. [65] Masuda HP, Cabral LM, De Veylder L, et al. ABAP1 is a novel plant Armadillo BTB protein involved in DNA replication and transcription[J]. The EMBO Journal, 2008, 27(20):2746-2756. [66] Costa MMR, Fox S, Hanna AI, et al. Evolution of regulatory interactions controlling floral asymmetry[J]. Development, 2005, 132(22):5093-5101. [67] Koroleva OA, Tomlinson ML, Leader D, et al. High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions[J]. The Plant Journal, 2005, 41(1):162-174. [68] Suzuki T, Sakurai K, Ueguchi C, et al. Two types of putative nuclear factors that physically interactwith histidine-containing phosphotransfer(Hpt)domains, signaling mediators in His-to-Asp phosphorelay, in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2001, 42(1):37. [69] Baba K, Nakano T, Yamagishi K, et al. Involvement of a nuclear-encoded basic helix-loop-helix protein in transcription of the light-responsive promoter ofpsbD[J]. Plant Physiology, 2001, 125(2):595-603. [70] Wagner R, Pfannschmidt T. Eukaryotic transcription factors in plastids Bioinformatic assessment and implications for the evolution of gene expression machineries in plants[J]. Gene, 2006, 381:62-70. [71] Welchen E, Gonzalez DH. Differential expression of the Arabidopsis cytochrome c genes Cytc-1 and Cytc-2. Evidence for the involvement of TCP-domain protein-binding elements in anther-and meristem-specific expression of the Cytc-1 gene[J]. Plant Physiology, 2005, 139(1):88-100. [72] Vandepoele K, Casneuf T, Van de Peer Y. Identification of novel regulatory modules in dicotyledonous plants using expression data and comparative genomics[J]. Genome Biology, 2006, 7(11):R103. [73] Ito M, Iwase M, Kodama H, et al. A novel cis-acting element in promoters of plant B-type cyclin genes activates M phase-specific transcription[J]. The Plant Cell Online, 1998, 10(3):331-342. [74] Tatematsu K, Ward S, Leyser O, et al. Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis[J]. Plant Physiology, 2005, 138(2):757-766. [75] Tremousaygue D, Manevski A, Bardet C, et al. Plant interstitial telomere motifs participate in the control of gene expression in root meristems[J]. The Plant Journal, 1999, 20(5):553-561. [76] Strayer C, Oyama T, Schultz TF, et al. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog[J]. Science, 2000, 289(5480):768. [77] Heery DM, Kalkhoven E, Hoare S, et al. A signature motif in transcriptional co-activators mediates binding to nuclear receptors[J]. Nature, 1997, 387(6634):733-736. [78] Weir I, Lu J, Cook H, et al. CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum[J]. Development, 2004, 131 (4):915. [79] Takeda T, Amano K, Ohto M, et al. RNA interference of the Arabi-dopsis putative transcription factor TCP16 gene results in abortion of early pollen development[J]. Plant Molecular Biology, 2006, 61(1):165-177. [80] Tatematsu K, Nakabayashi K, Kamiya Y, et al. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana[J]. The Plant Journal, 2008, 53(1):42-52. [81] Busch A, Zachgo S. Control of corolla monosymmetry in the Brassicaceae Iberis amara[J]. Proceedings of the National Academy of Sciences, 2007, 104(42):16714. [82] Gaudin V, Lunness PA, Fobert PR, et al. The expression of D-cyclin genes defines distinct developmental zones in snapdragon apical meristems and is locally regulated by the Cycloidea gene[J]. Plant Physiology, 2000, 122(4):1137-1148. [83] Ruuska SA, Girke T, Benning C, et al. Contrapuntal networks of gene expression during Arabidopsis seed filling[J]. The Plant Cell Online, 2002, 14(6):1191-1206. [84] López-Juez E, Dillon E, Magyar Z, et al. Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis[J]. The Plant Cell Online, 2008, 20(4):947-968. [85] Arazi T, Talmor-Neiman M, Stav R, et al. Cloning and characterization of micro-RNAs from moss[J]. The Plant Journal, 2005, 43(6):837-848. [86] Chung B, Simons C, Firth A, et al. Effect of 5’UTR introns on gene expression in Arabidopsis thaliana[J]. BMC Genomics, 2006, 7(1):120. [87] Kim MJ, Kim H, Shin JS, et al. Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5'-UTR intron[J]. Molecular Genetics and Genomics, 2006, 276(4):351-368. [88] Johnson DS, Mortazavi A, Myers RM, et al. Genome-wide mapping of in vivo protein-DNA interactions[J]. Science, 2007, 316(5830):1497. [89] Hiratsu K, Matsui K, Koyama T, et al. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis[J]. The Plant Journal, 2003, 34(5):733-739. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[3] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[4] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[5] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[6] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[7] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[8] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[9] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[10] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[11] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[12] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[13] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[14] | JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor [J]. Biotechnology Bulletin, 2023, 39(1): 84-94. |
[15] | WANG Nan-nan, WANG Wen-jia, ZHU Qiang. Research Progress of microRNAs in Plant Stress Responses [J]. Biotechnology Bulletin, 2022, 38(8): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||