Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (11): 59-64.doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.008
• Orginal Article • Previous Articles Next Articles
WEI Xue, SUN Li-chao, LI Shu-ying, WANG Feng-zhong, XIN Feng-jiao
Received:
2016-04-19
Online:
2016-11-25
Published:
2016-11-11
WEI Xue, SUN Li-chao, LI Shu-ying, WANG Feng-zhong, XIN Feng-jiao. Immobilization of Lipase and Its Application in Food Industry[J]. Biotechnology Bulletin, 2016, 32(11): 59-64.
[1] Jaeger KE, Reetz MT. Microbial lipases form versatile tools for biotechnology[J]. Trends Biotechnol, 1998, 16(9):396-403. [2] Salihu A, Alam MZ. Solvent tolerant lipases:A review[J]. Process Biochemistry, 2015, 50(1):86-96. [3] Powell LW. Developments in immobilized-enzyme technology[J]. Biotechnol Genet Eng Rev, 1984, 2:409-438. [4] Zhang WX, Liu LB, Li C, et al. Research progress in immobilized lipase technology[J]. Science and Technology of Food Industry, 2013, 21(1):43-48. [5] Martinc TW, Lagunoff D. Interactions of lysophospholipids and mast cells[J]. Nature, 1979, 279(5710):250-252. [6] Bruni A, Bigon E, Battistella A, et al. Lysophosphatidylserine as histamine releaser in mice and rats[J]. Agents and Actions, 1984, 14(5-6):619-625. [7] Horigome K, Tamori-Natori Y, Inoue K, et al. Effect of serine phospholipid structure on the enhancement of concanavalin A-induced degranulation in rat mast cells[J]. Journal of Biochemistry, 1986, 100(3):571-579. [8] Ling H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana[J]. Pak J Biol Sci, 2008, 11(5):763-767. [9] Chepyshko H, Lai CP, Huang LM, et al. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice(Oryza sativa L. japonica)genome:new insights from bioinformatics analysis[J]. BMC Genomics, 2012, 13:309. [10] Kang HY, Kim JF, Kim MH, et al. MELDB:A database for micr-obial esterases and lipases[J]. FEBS Letters, 2006, 580(11):2736-2740. [11] Ma LJ, Ibrahim AS, Skory C, et al. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication [J]. PLoS Genetics, 2009, 5(7):e1000549. [12] Langin D, Laurell H, Holst LS, et al. Gene organization and primary structure of human hormone-sensitive lipase:possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90:4897-4901. [13] Pang PP, Pruitt RE, Meyerowitz EM. Molecular cloning, genomic organization, expression and evolution of 12S seed storage protein genes of Arabidopsis thaliana[J]. Plant Molecular Biology, 1988, 11(6):805-820. [14] Nardini M, Dijkstra BW. α/β Hydrolase fold enzymes:the family keeps growing[J]. Curr Opin Struct Biol, 1999, 6:732-737. [15] Ollis DL, Cheah E, Cygler M, et al. The α/β hydrolase fold[J]. Protein Engineering, 1992, 5(3):197-211. [16] Stéphane Y, Ivanova MG, Marek BA, et al. Binding of Thermomyces(Humicola)lanuginosa lipase to the mixed micelles of cis-parinaric acid/NaTDC[J]. European Journal of Biochemistry, 2002, 269(6):1613-1621. [17] Chapus C, Sémériva M, Bovier-Lapierre C, et al. Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic lipase[J]. Biochemistry, 1976, 15(23):4980-4987. [18] Verger R. ‘Interfacial activation’ of lipases:facts and artifacts[J]. Trends in Biotechnology, 1997, 15(1):32-38. [19] Svendsen A. Lipase protein engineering[J]. Biochimica et Biophysica Acta(BBA)/Protein Structure and Molecular Enzymology, 2000, 1543(2):223-238. [20] Davis BG, Boyer V. Biocatalysis and enzymes in organic synthesis[J]. Natural Product Reports, 2002, 18(6):618-640. [21] Mohamad NR, Marzuki NH, Buang NA, et al. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes[J]. Biotechnology & Biotechnological Equipment, 2015, 29(2):205-220. [22] Ghattas N, Filice M, Abidi F, et al. Purification and improvement of the functional properties of Rhizopus oryzae lipase using immobilization techniques[J]. Journal of Molecular Catalysis, 2014, 110(12):111-116. [23] Yan Y, Zhang X, Chen D. Enhanced catalysis of Yarrowia lipolytica lipase LIP2 immobilized on macroporous resin and its application in enrichment of polyunsaturated fatty acids[J]. Bioresource Technology, 2013, 131(5):179-187. [24] Aybastıer Ö, Demir C. Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrene-divinylbenzene copolymer using response surface methodology[J]. Journal of Molecular Catalysis, 2010, 63(3):170-178. [25] Khoobi M, Motevalizadeh SF, Asadgol Z, et al. Polyethyleneimine-modified superparamagnetic Fe 3 O 4 nanoparticles for lipase immobilization:characterization and application[J]. Materials Chemistry and Physics, 2015, 15(1):77-86. [26] Li Y, Wang W, Han PF. Immobilization of Candida sp. 99-125 lipase onto silanized SBA-15 mesoporous materials by physical adsorption[J]. Korean J Chem Eng, 2014, 31(1):98-103. [27] Jun C, Jeon BW, Joo JC, et al. Thermostabilization of Candida antarctica lipase B by double immobilization:Adsorption on a macroporous polyacrylate carrier and R1 silaffin-mediated biosilicification[J]. Process Biochem, 2013, 8:1181-1187. [28] Adnani A, Basri M, Malek EA, et al. Optimization of lipase-catalyzed synthesis of xylitol ester by Taguchi robust design method[J]. Industrial Crops & Products, 2010, 2:350-356. [29] Zaidan UH, Rahmana MBA, Othman SS, et al. Biocatalytic production of lactose ester catalysed by mica-based immobilised lipase[J]. Food Chemistry, 2012, 131(1):199-205. [30] Esenduran G, Hall NG, Liu Z. Continuous enzymatic interesterification of milkfat with soybean oil produces a highly spreadable product rich in polyunsaturated fatty acids[J]. Eur J Lipid Sci Technol, 2015, 117(5):608-619. [31] Tecelão, C Silva J, Dubreucq E, et al. Production of human milk fat substitutes enriched in omega-3 polyunsaturated fatty acids using immobilized commercial lipases and Candida parapsilosis lipase/acyltransferase[J]. J Mol Catal B Enzym, 2010, 65(1-4):122-127. [32] Matte CR, Bussamara R, Dupont J, et al. Immobilization of Thermomyces lanuginosus lipase by different techniques on immobead 150 support:characterization and applications[J]. Appl Biochem Biotechnol, 2014, 172(5):2507-2520. [33] Damnjanović JJ, Žuža MG, Savanovićset JK, et al. Covalently immobilized lipase catalyzing high-yielding optimized geranyl butyrate synthesis in a batch and fluidized bed reactor[J]. J Mol Catal B Enzym, 2012, 75(5):50-59. [34] Gupta A, Dhakate SR, Pahwa M, et al. Geranyl acetate synthesis catalyzed by Thermomyces lanuginosus lipase immobilized on electrospun polyacrylonitrile nanofiber membrane[J]. Process Biochemistry, 2013, 48(1):124-132. [35] Sun WJ, Zhao HX, Cui FJ, et al. D-isoascorbyl palmitate:lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology[J]. Chemistry Central Journal, 2013, 7(1):114. [36] Santibáñez L, Wilson L, Illanes A. Synthesis of ascorbyl palmitate with immobilized lipase from Pseudomonas stutzeri[J]. Journal of the American Oil Chemists’ Society, 2014, 91(3):405-410. [37] Reyes-Duarte D, Lopez-Cortes N, Torres P, et al. Synthesis and properties of ascorbyl esters catalyzed by lipozyme TL IM using triglycerides as acyl donors[J]. Journal of the American Oil Chemists’ Society, 2011, 88(1):57-64. [38] Lopresto CG, Naccarato S, Albo L, et al. Enzymatic transesterifica-tion of waste vegetable oil to produce biodiesel[J]. Ecotoxicology and Environmental Safety, 2015, 121:229-235. [39] Yücel Y. Biodiesel production from pomace oil by using lipase immobilized onto olive pomace[J]. Bioresource Technology, 2011, 102(4):3977-3980. [40] Zhong X, Qian JQ, Guo H, et al. Biosynthesis of sucrose-6-acetate catalyzed by surfactant-coated Candida rugosa lipase immobilized on sol-gel supports[J]. Bioprocess Biosyst Eng, 2014, 37(5):813-818. |
[1] | CHEN Jin-hang, ZHANG Yi, ZHANG Jun-tao, WEI Ben-mei, WANG Hong-xun, ZHENG Ming-ming. Preparation of Immobilized Lipase for the Solvent-free Synthesis of Cinnamyl Acetate [J]. Biotechnology Bulletin, 2023, 39(9): 97-104. |
[2] | ZHANG Ze-ying, FAN Qing-feng, DENG Yun-feng, WEI Ting-zhou, ZHOU Zheng-fu, ZHOU Jian, WANG Jin, JIANG Shi-jie. Whole Genome Sequencing and Comparative Genomic Analysis of a High-yield Lipase-producing Strain WCO-9 [J]. Biotechnology Bulletin, 2022, 38(10): 216-225. |
[3] | ZHAO A-hui, WANG Xian-guo, DONG Jian, HOU Zuo, ZHAO Wan-chun, GAO Xiang, YANG Ming-ming. Advances in the Study of Phospholipase C Response to Stress in Plants [J]. Biotechnology Bulletin, 2021, 37(5): 154-164. |
[4] | WU Rong, CAO Jia-rui, CAO Jun, LIU Fei-xiang, YANG Meng, SU Er-zheng. Expression and Fermentation Optimization of Candida antarctica Lipase B in Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(2): 138-148. |
[5] | HUANG Yang-tian, LU Yu-biao, HUANG Yi-tie, MENG Fan-long, XU Kai-wen, LI Peng. Screening and Identification of Marine Electricity-producing and Lipase-producing Bacteria and Preliminary Study on Its Culture Conditions [J]. Biotechnology Bulletin, 2020, 36(12): 91-97. |
[6] | ZHU Cai-lin, LÜ Xiang, XIA Xiao-le. Effect of Site-directed Mutagenesis of Amino Acids in Lid Region on the Enzymatic Properties of T1 Lipase [J]. Biotechnology Bulletin, 2020, 36(11): 94-102. |
[7] | CAI Yu-zhen, BAI Qiao-yan, SU Min, TANG Liang-hua. Strategies and Advances in the Molecular Modification of Substrate Binding Pocket of Lipase [J]. Biotechnology Bulletin, 2020, 36(11): 173-180. |
[8] | SHI Li-xia, GAO Song-feng, ZHU Lei-lei. Research Advance in Polyethylene Terephthalate Hydrolytic Enzymes [J]. Biotechnology Bulletin, 2020, 36(10): 226-236. |
[9] | LIN Mei-xuan, ZHOU Xiao-man, GUAN Feng, CUI Wen-jing. Heterologous Expression and Application of Phosphatidylinositol-specific Phospholipase C [J]. Biotechnology Bulletin, 2020, 36(1): 81-87. |
[10] | ZHANG Wei-wei, YANG Hui-xia, XUE Ping. A General Overview of Nanomaterials Immobilized Lipases for Biodiesel Production [J]. Biotechnology Bulletin, 2020, 36(1): 160-166. |
[11] | LIU Jin-hui, LI Xiao-lu, JIANG Yan, WANG Hai-kuan. Optimization of Fermentation Conditions of Lipase-producing Pseudomonas stutzeri PS59 and Washing Performance of the Lipase [J]. Biotechnology Bulletin, 2016, 32(7): 186-193. |
[12] | Zhang Yao, Lu Guobing, Zhou Bo, Wang Bing, Mu Zhimei. Optimization of Fermentation and Enzymatic Characterization of Lipase-producing Burkholder cepacia Lu10-1 [J]. Biotechnology Bulletin, 2015, 31(9): 190-196. |
[13] | Zhang Qian, Wang Jianying, Lin Zhi, Jia Jia, Guo Hongtao. Recombinant Expression of Rhizopus chinensis Lipase in Aspergillus niger [J]. Biotechnology Bulletin, 2015, 31(3): 165-170. |
[14] | Zhang Qian, Jia Jia, Lin Zhi, Yang Xiaofeng, Guo Hongtao, Wang Jianying, Carol Sze Ki Lin. The Optimization of Flask Fermentation Conditions for the Production of Extracellular Lipase from Aspergillus niger [J]. Biotechnology Bulletin, 2015, 31(12): 227-233. |
[15] | Zhao Jun, Zhao Shuqin, Yang Xiaopu, Liu Xiaoli. Screening and Identification of Eosinophilic Fungal Strain Producing Lipase and Optimization of Its Lipase-producing Condition [J]. Biotechnology Bulletin, 2015, 31(10): 171-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||