Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (11): 52-58.doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.007
• Orginal Article • Previous Articles Next Articles
CHEN Ke1, DING Yan-ping2, WANG Jian-lin1, SHAO Bao-ping1
Received:
2016-07-04
Online:
2016-11-25
Published:
2016-11-11
CHEN Ke, DING Yan-ping, WANG Jian-lin, SHAO Bao-ping. Research Progress on p53-involved Metabolic Regulation[J]. Biotechnology Bulletin, 2016, 32(11): 52-58.
[1] Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours[J]. Nature, 1992, 356(6366):215-221. [2] Horn HF, Vousden KH. Coping with stress:multiple ways to activate p53[J]. Oncogene, 2007, 26(9):1306-1316. [3] Jones RG, Plas DR, Kubek S, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint[J]. Mol Cell, 2005, 18(3):283-293. [4] Maddocks OD, Berkers CR, Mason SM, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells[J]. Nature, 2013, 493(7433):542-546. [5] Zoncu R, Efeyan A, Sabatini DM. mTOR:from growth signal integration to cancer, diabetes and ageing[J]. Nat Rev Mol Cell Biol, 2011, 12(1):21-35. [6] Laplante M, Sabatini DM. mTOR signaling at a glance[J]. J Cell Sci, 2009, 122(Pt 20):3589-3594. [7] 郑鹏生, 冀静. mTOR信号通路与肿瘤的研究进展[J]. 西安交通大学学报:医学版, 2010, 31(1):1-9. [8] Howell JJ, Manning BD. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis[J]. Trends Endocrinol Metab, 2011, 22(3):94-102. [9] Laplante M, Sabatini DM. mTOR signaling in growth control and disease[J]. Cell, 2012, 149(2):274-293. [10] Huang K, Fingar DC. Growing knowledge of the mTOR signaling network[J]. Semin Cell Dev Biol, 2014, 36:79-90. [11] Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress[J]. Mol Cell, 2010, 40(2):310-322. [12] Cam M, Bid HK, Xiao L, et al. p53/TAp63 and AKT regulate mammalian target of rapamycin complex 1(mTORC1)signaling through two independent parallel pathways in the presence of DNA damage[J]. J Biol Chem, 2014, 289(7):4083-4094. [13] Agarwal S, Bell CM, Taylor SM, et al. p53 Deletion or hot-spot mut-ations enhance mTORC1 activity by altering lysosomal dynamics of TSC2 and Rheb[J]. Mol Cancer Res, 2015, 1:66-77. [14] Imamura K, Ogura T, Kishimoto A, et al. Cell cycle regulation via p53 phosphorylation by a 5’-AMP activated protein kinase activa-tor, 5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line[J]. Biochem Biophys Res Commun, 2001, 2:562-567. [15] Lee CW, Wong LL, Tse EY, et al. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells[J]. Cancer Res, 2012, 72(17):4394-4404. [16] Mungamuri SK, Yang X, Thor AD, et al. Survival signaling by Notch1:mammalian target of rapamycin(mTOR)-dependent inhibition of p53[J]. Cancer Res, 2006, 66(9):4715-4724. [17] Astle MV, Hannan KM, Ng PY, et al. AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage:implications for targeting mTOR during malignancy[J]. Oncogene, 2012, 31(15):1949-1962. [18] Lee CH, Inoki K, Karbowniczek M, et al. Constitutive mTOR activation in TSC mutants sensitizes cells to energy starvation and genomic damage via p53[J]. Embo J, 2007, 23:4812-4823. [19] Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health:a lifeguard with a licence to kill[J]. Nat Rev Mol Cell Biol, 2015, 16(7):393-405. [20] Li H, Jogl G. Structural and biochemical studies of TIGAR(TP53-induced glycolysis and apoptosis regulator)[J]. J Biol Chem, 2009, 284(3):1748-1754. [21] Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis[J]. Cell, 2006, 126(1):107-120. [22] Kondoh H, Lleonart ME, Gil J, et al. Glycolytic enzymes can modulate cellular life span[J]. Cancer Res, 2005, 65(1):177-185. [23] Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2[J]. Cancer Res, 2012, 72(2):560-567. [24] Wang L, Xiong H, Wu F, et al. Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth[J]. Cell Rep, 2014, 8(5):1461-1474. [25] Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression[J]. Cancer Res, 2004, 7:2627-2633. [26] Singh SK, Chen NM, Hessmann E, et al. Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity[J]. Embo J, 2015, 34(24):2985-3037. [27] Kawauchi K, Araki K, Tobiume K, et al. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation[J]. Nat Cell Biol, 2008, 10(5):611-618. [28] Boidot R, Vegran F, Meulle A, et al. Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors[J]. Cancer Res, 2012, 4:939-948. [29] Bensaad K, Cheung EC, Vousden KH. Modulation of intracellular ROS levels by TIGAR controls autophagy[J]. Embo J, 2009, 28(19):3015-3026. [30] Wanka C, Steinbach JP, Rieger J. Tp53-induced glycolysis and apoptosis regulator(TIGAR)protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis[J]. J Biol Chem, 2012, 287(40):33436-33446. [31] Cheung EC, Ludwig RL, Vousden KH. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death[J]. Proc Natl Acad Sci USA, 2012, 50:20491-20496. [32] Jiang P, Du W, Wang X, et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase[J]. Nat Cell Biol, 2011, 13(3):310-316. [33] Siegl C, Prusty BK, Karunakaran K, et al. Tumor suppressor p53 alters host cell metabolism to limit Chlamydia trachomatis infection[J]. Cell Rep, 2014, 9(3):918-929. [34] Matoba S, Kang JG, Patino WD, et al. p53 regulates mitochondrial respiration[J]. Science, 2006, 312(5780):1650-1653. [35] Jiang P, Du W, Mancuso A, et al. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence[J]. Nature, 2013, 493(7434):689-693. [36] Puzio-Kuter AM. The role of p53 in metabolic regulation[J]. Genes Cancer, 2011, 2(4):385-391. [37] Hallenborg P, Feddersen S, Madsen L, et al. The tumor suppressors pRB and p53 as regulators of adipocyte differentiation and function[J]. Expert Opin Ther Targets, 2009, 2:235-246. [38] Wang X, Zhao X, Gao X, et al. A new role of p53 in regulating lipid metabolism[J]. J Mol Cell Biol, 2013, 5(2):147-150. [39] Goldstein I, Rotter V. Regulation of lipid metabolism by p53 - fighting two villains with one sword[J]. Trends Endocrinol Metab, 2012, 23(11):567-575. [40] Zaugg K, Yao Y, Reilly PT, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress[J]. Genes Dev, 2011, 25(10):1041-1051. [41] Ide T, Brown-Endres L, Chu K, et al. GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress[J]. Mol Cell, 2009, 36(3):379-392. [42] Liu Y, He Y, Jin A, et al. Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation[J]. Proc Natl Acad Sci USA, 2014, 111(23):E2414-22. [43] Kim J, Nakasaki M, Todorova D, et al. p53 Induces skin aging by depleting Blimp1+ sebaceous gland cells[J]. Cell Death Dis, 2014, 27(5):87-97. [44] Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling[J]. Cell, 2008, 134(3):451-460. [45] Yoon KA, Nakamura Y, Arakawa H. Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses[J]. J Hum Genet, 2004, 49(3):134-140. [46] Ambs S, Ogunfusika MO, Merriam WG, et al. Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice[J]. Proc Natl Acad Sci USA, 1998, 95(15):8823-8828. [47] Subbaramaiah K, Michaluart P, Chung WJ, et al. Resveratrol inhibits cyclooxygenase-2 transcription in human mammary epithelial cells[J]. Ann N Y Acad Sci, 1999, 889:214-223. [48] Zhuang J, Ma W, Lago CU, et al. Metabolic regulation of oxygen and redox homeostasis by p53:lessons from evolutionary biology?[J]. Free Radic Biol Med, 2012, 53(6):1279-1285. [49] Rivera A, Maxwell SA. The p53-induced gene-6(proline oxidase)mediates apoptosis through a calcineurin-dependent pathway[J]. J Biol Chem, 2005, 280(32):29346-29354. [50] Jiang L, Hickman JH, Wang SJ, et al. Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses[J]. Cell Cycle, 2015, 14(18):2881-2885. [51] Italiano D, Lena AM, Melino G, et al. Identification of NCF2/p67phox as a novel p53 target gene[J]. Cell Cycle, 2012, 11(24):4589-4596. [52] Kang MY, Kim HB, Piao C, et al. The critical role of catalase in prooxidant and antioxidant function of p53[J]. Cell Death Differ, 2013, 20(1):117-129. [53] Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect:the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930):1029-1033. [54] Ward PS, Thompson CB. Metabolic reprogramming:a cancer hallmark even warburg did not anticipate[J]. Cancer Cell, 2012, 21(3):297-308. [55] Liu J, Zhang C, Hu W, et al. Tumor suppressor p53 and its mutants in cancer metabolism[J]. Cancer Lett, 2015, 356(2 Pt A):197-203. [56] Li T, Kon N, Jiang L, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence[J]. Cell, 2012, 149(6):1269-1283. [57] Feng Z, Levine AJ. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein[J]. Trends Cell Biol, 2010, 20(7):427-434. [58] Hasty P, Sharp ZD, Curiel TJ, et al. mTORC1 and p53:clash of the gods?[J]. Cell Cycle, 2013, 12(1):20-25. [59] Akeno N, Miller AL, Ma X, et al. p53 suppresses carcinoma progression by inhibiting mTOR pathway activation[J]. Oncogene, 2014, 27(10):589-599. [60] Pena-Rico MA, Calvo-Vidal MN, Villalonga-Planells R, et al. TP53 induced glycolysis and apoptosis regulator(TIGAR)knockdown results in radiosensitization of glioma cells[J]. Radiother Oncol, 2011, 101(1):132-139. [61] Singh RD, Patel KR, Patel PS. p53 mutation spectrum and its role in prognosis of oral cancer patients:A study from Gujarat, West India[J]. Mutat Res, 2015, 783(2016):15-26. [62] Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers[J]. Science, 2006, 314(5797):268-274. [63] 缪明永. P53突变或缺失与肿瘤代谢重编程[J]. 肿瘤代谢与营养电子杂志, 2014, 1(2):26-30. [64] Oren M, Rotter V. Mutant p53 gain-of-function in cancer[J]. Cold Spring Harb Perspect Biol, 2010, 2(2):a001107. [65] Muller PA, Vousden KH. p53 mutations in cancer[J]. Nat Cell Biol, 2013, 15(1):2-8. [66] Freed-Pastor WA, Prives C. Mutant p53:one name, many proteins[J]. Genes Dev, 2012, 26(12):1268-1286. [67] Yahagi N, Shimano H, Matsuzaka T, et al. p53 Activation in adipocytes of obese mice[J]. J Biol Chem, 2003, 278(28):25395-25400. [68] Derdak Z, Villegas KA, Harb R, et al. Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease[J]. J Hepatol, 2013, 58(4):785-791. [69] Zhang X, Duan W, Lee WP, et al. Overexpression of p53 improves blood glucose control in an insulin resistant diabetic mouse model[J]. Pancreas, 2016, 45(7):1010-1017. [70] Kung CP, Leu JI, Basu S, et al. The P72R polymorphism of p53 predisposes to obesity and metabolic dysfunction[J]. Cell Rep, 2016, 14(10):2413-2425. [71] Porteiro B, Diaz-Ruiz A, Martinez G, et al. Ghrelin requires p53 to stimulate lipid storage in fat and liver[J]. Endocrinology, 2013, 154(10):3671-3679. |
[1] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[2] | DUAN Yue-tong, WANG Peng-nian, ZHANG Chun-bao, LIN Chun-jing. Research Progress in Plant Flavanone-3-hydroxylase Gene [J]. Biotechnology Bulletin, 2022, 38(6): 27-33. |
[3] | TIAN Qing-yin, YUE Yuan-zheng, SHEN Hui-min, PAN Duo, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Regulation of Carotenoid Metabolism in Plant Ornamental Organs [J]. Biotechnology Bulletin, 2022, 38(12): 35-46. |
[4] | YUAN Kai, HE Wei, YANG Yun-li, ZHU Wei-yu, PENG Chao, AN Tai, LI Li, ZHOU Wei-qiang. Research Progress on Biosynthesis and Metabolic Regulation of Ganoderic Acids [J]. Biotechnology Bulletin, 2021, 37(8): 46-54. |
[5] | GU Yang, TAN Hai, YUAN Lin-na, SUN Hai-yan, CHANG Jing-ling, LI Zhi-gang. Physiological Mechanisms for Enhanced Cyclic Adenosine Monophosphate Biosynthesis by Sodium Fluoride in Arthrobacter sp. [J]. Biotechnology Bulletin, 2021, 37(5): 108-116. |
[6] | MA qin, LEI Rui-feng, Dilireba Abudourousuli, Muyesaier Aosiman, Zulihumaer Rouzi, AN Deng-di. Research Progress on the Symbiotic Metabolic of Endophytes and Plants Under Stress [J]. Biotechnology Bulletin, 2021, 37(3): 153-161. |
[7] | BAO Lin-zhu, SHI Can, LU Ling-er, XU Xing, ZHOU Ze-bin, REN Jian-feng, LI Wei-ming, ZHANG Qing-hua. Regulation of Gene mapk1 in Danio rerio on Gene tp53 [J]. Biotechnology Bulletin, 2021, 37(12): 160-168. |
[8] | MENG Xiao-jian, YU Jian-dong, ZHENG Xiao-mei, ZHENG Ping, LI Zhi-min, SUN Ji-bin, YE Qin. Regulations of Small-molecules Metabolites on Hexokinase and Pyruvate Kinase in Aspergillus niger [J]. Biotechnology Bulletin, 2021, 37(12): 180-190. |
[9] | XIE Wen-ya, ZOU Shi-ying, Gao Ru-xin, HE Xiao-yun. Research Progress on the Mitochondrial Pyruvate Carrier(MPC) [J]. Biotechnology Bulletin, 2019, 35(7): 196-201. |
[10] | ZHANG Jing-rou, SHAO Gui-fang, WANG Jiao, ZHANG Shui, YANG Ting-yu, DENG Ming-hua. Clone and Expression Profile Analyses of the Gene CaATP9 in Pepper(Capsicum annuum L.)Male Sterility Line [J]. Biotechnology Bulletin, 2019, 35(11): 9-15. |
[11] | GAO Yue, GUO Xiao-peng, YANG Yang, ZHANG Miao-miao, LI Wen-jian, LU Dong. Research Progress of Biobutanol Fermentation [J]. Biotechnology Bulletin, 2018, 34(8): 27-34. |
[12] | HUO Gui-tao, YANG Yan-wei, WU Xi, LIU Su-su, LI Qian-qian, ZHOU Shu-ya, LIU Quan-ming, WANG San-long, SHEN Yue-lei, LÜ Jian-jun, FAN Chang-fa. Construction and Phenotypic Analysis of Gene p53 Knockout Rat Model [J]. Biotechnology Bulletin, 2018, 34(8): 170-174. |
[13] | ZHENG Chen-hua, DU Xi-ping, LI Li-jun, LI Tian-li, CAO Ying, NI Hui. The Relationship Between Characteristics of Yielding Carotenoid and Expression of Carotenogenic Genes in Phaffia rhodozyma [J]. Biotechnology Bulletin, 2016, 32(2): 123-130. |
[14] | Zhan Shenbiao, Lü Yinghui, Li Zhaofa,. Progress in the Research Regarding to the Function of Protein Rep78/68 [J]. Biotechnology Bulletin, 2014, 0(2): 24-29. |
[15] | Li Yawei Zhao Lin Hao Yongwei Tang Xiuli Yang Jikun Gao Yuzhen Liu Xinli . Screening and Identification of Interspecies Microorganisms Inducing Overproduction of Epothiones in Sorangium cellulosum [J]. Biotechnology Bulletin, 2013, 0(10): 137-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||