[1] 刘永康, 陈国民. 细胞膜对大分子物质及颗粒物质的跨膜转运[J]. 现代医药卫生, 2006(5):674-675. [2] 马蓉, 张立军, 丁锐, 等. 大肠杆菌氨基酸转运蛋白的研究进展[J]. 科技通报, 2012, 3:49-56, 99. [3] 王晶敏. 核苷转运蛋白在细胞水平跨膜转运作用的研究进展[J]. 国外医学·药学分册, 2003, 1:17-22. [4] 李剑, 李光永, 王道文. 核苷转运蛋白的研究进展[J]. 科学通报, 2002, 7:481-484. [5] Martinussen J, Willemoës M, Kilstrup M. Nucleotide metabolism [M]. Second Edition. Comprehensive Biotechnology, 2011:91-107. [6] Charles L. Turnbough Jr, Robert L, et al. Regulation of pyrimidine biosynthetic gene expression in bacteria:repress ion without repressors[J]. Microbiology and Molecular Biology Reviews, 2008, 72(2):266-300. [7] Paulsen IT, Sliwinski MK, Saier MH. Microbial genome analyses:Global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities[J]. J Mol Biol, 1998, 277:573-592. [8] http//bioweb. pasteur. fr/seqanal/interfaces/toppred. html [9] Madej T, Lanczycki CJ, Zhang D, et al. MMDB and VAST+:tracking structural similarities between macromolecular complexes[J]. Nucleic Acids Res, 2014, 42(Database issue):D297-303. [10] Villas-Boas S, Han TL, Liu T, et al. What is the relationship between intracellular and extracellular metabolites? The theory of “metabolic overflow” put into test[J]. New Biotechnology, 2014, 31:S28-S29. [11] 张星元. 发酵原理[M]. 北京:科学出版社, 2011. [12] Baranyi J, Metris A, George SM. Bacterial economics:Adaptation to stress conditions via stage-wise changes in the response mechanism[J]. Food Microbiology, 2015, 45:162-166. [13] Chokkathukalam A, Kim DH, Barrett MP, et al. Stable isotope-labeling studies in metabolomics:new insights into structure and dynamics of metabolic networks[J]. Bioanalysis, 2014, 6(4):511-524. [14] 张星元, 李秀敏, 杨毅, 等. 谷氨酸棒杆菌的氨基酸输送系统的存在、功能及其在氨基酸生产上的重要性[J]. 无锡轻工大学学报, 2004, 23(3):105-110. [15] 姚辉, 张建华, 毛忠贵. 谷氨酸棒状杆菌的谷氨酸分泌模式初探[J]. 食品与发酵工业, 2013, 39(5):54-58. [16] Eggeling L, Krumbach K, Shahm H. L-Glutamate efflux with Corynebacterium glutamicum:why is penicillin treatment or Tween addition doing the same[J]. J Mol Microbiol Biotechnol, 2001, 3(1):67-68. [17] Puech V, Chami M, Lemassu A, et al. Structure of the cell envelope of corynebacteria:importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane[J]. Microbioloy, 2001, 147:1365-1382. [18] Ramadan A, Naydenova Z, Stevanovic K, et al. The adenosine transport ENT1 in cardiomyocytes is sensitive to inhibition by ethanol in akinase-dependent manner:implications for ethanol-dependent cardioprotection and nucleoside analog drug cytotoxicity[J]. Purinergic Signalling, 2014, 10(2):305-312. [19] Zhu H, Yang SM, Yuan ZM, et al. Metabolic and genetic factors affecting the productivity of pyrimidine nucleoside in Bacillus subtilis[J]. Microbial Cell Factories, 2015, 14:54. [20] Song BH, Jan N. Chromosomal location, cloning and nucleotide sequence of the Bacillus subtilis cdd gene encoding cytidine/deoxycytidine deaminase[J]. Mol Gen Genet, 1989;216:462-468. [21] Saxild HH, Andersen LN, Hammer K. Dra-nupC-pdp operon of Bacillus subtilis:nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein[J]. J Bacteriol, 1996, 178:424-434. [22] Henderson PJ, Herbert RB. The nucleoside transport proteins, NupC and NupG, from Escherichia coli:specific structural motifs necessary for the binding of ligands[J]. Org Biomol Chem, 2005, 3:462-470. [23] Karatza P, Frillingos S. Cloning and functional characterization of two bacterial members of the NAT/NCS2 family in Escherichia coli[J]. Mol Membr Biol, 2005, 22(3):251-261. [24] Munch-Petersen A, Jensen N, et al. Cloning and expression of genes encoding the nupG nucleoside transport system in Escherichia coli[J]. The Cell Membran, 1984, 411(2):85-99. [25] Zhu H, Yang SM, Yuana ZM, et al. Metabolic and genetic factors affecting the productivity of pyrimidine nucleoside in Bacillus subtilis[J]. Microbial Cell Factories, 2015, 14(54):2-12 . [26] Jardetzky O. Simple allosteric model for membrane pumps[J]. Nature, 1966, 211:969-970. [27] Mitchell P. A general theory of membrane transport from studies of bacteria[J]. Nature, 1957, 180(4577):134-136. [28] Smirnova I, Kasho V, Choe JY, et al. Sugar binding induces an outward facing conformation of LacY[J]. Proc Natl Acad Sci USA, 2007, 104:16504-16509. [29] Monné M, Chan KW, Slotboom DJ, et al . Functional expression of eukaryotic membrane proteins in Lactococcus lactis[J]. Protein Sci, 2005, 14(12):3048-3056. [30] Abramson J, Smirnova I, Kasho V, et al . Structure and mechanism of the lactose permease of Escherichia coli[J]. Science, 2003, 301(5633):610-615. [31] Huang Y, Lemieux MJ, Song JM. Structure and mechanism of theglycerol-3-phosphate transporter from Escherichia coli[J]. Science, 2003, 301(5633):616-620. [32] 赵伟睿, 胡升, 黄俊, 等. 微生物细胞通透性改善方法与策略[J]. 中国生物工程杂志, 2014, 34(3):125-131. [33] Yamada S, Awano N, Inubushi K, et al. Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli[J]. Applied and Environmental Microbiology, 2006, 72(7):4735-4742. [34] Kuhn JG. Fluorouracil and the new oral fluorinated pyrimidines[J]. Ann Pharmacother, 2001, 35(2):217-227. [35] Mohanty AK, Wiener MC. Membrane protein expression andproduction:effects of polyhistidine tag length and position[J]. Protein Expr Purif, 2004, 33(2):311-325. [36] Sheremet AS, Gronskiy SV, Akhmadyshin RA, et al. Enhancement of extrancellular purine nucleoside accumulation by Bacillus strains through genetic modifications of genes involved in nucleoside export[J]. Jlnd Microbiol Biotechnol, 2011, 38(1):65-70. |