[1] 林时迟, 张绍升, 周乐峰, 等. 福建省香蕉枯萎病鉴定[J] . 福建农业大学学报, 2000, 29(4):465-469. [2] Li CQ, Shao JF, Wang YJ, et al. Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense[J] . BMC Genomics, 2013, 14(1):851-867. [3] Bai TT, Xie WB, Zhou PP, et al. Transcriptome and expression profile analysis of highly resistant and susceptible banana roots challenged with Fusarium oxysporum f. sp. cubense tropical race 4[J] . PLoS One, 2013, 8(9):1-11. [4] Li CY, Deng GM, Yang J, et al. Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4[J] . BMC Genomics, 2012, 13(1):374-385. [5] Li XS, Bai TT, Li YF, et al. Proteomic analysis of Fusarium oxysporum f. sp. cubense tropical race 4 inoculated response to Fusarium wilts in the banana root cells[J] . Proteome Science, 2013, 11(1):41-55. [6] 王卓, 等. 香蕉过氧化物酶基因表达和酶活性与香蕉抗枯萎病的关系[J] . 中国农学通报, 2013, 29(34):115-121. [7] Schlumbaum A, Mauch F, et al. Plant chitinases are potent inhibitors of fungal growth[J] . Nature, 1986, 324(6095):365-367. [8] Kawasaki T, Koita H, Nakatsubo T, et al. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defence signaling in rice[J] . Proc Natl Acad Sci, USA, 2006, 103(1):230-235. [9] 国会艳. 白桦BplMYB46基因调控抗旱耐盐和次生壁形成的分子机理[D] . 哈尔滨:东北林业大学, 2014. [10] 邹丽. 水扬酸、茉莉酸对水稻木质素合成调控的研究[D] . 武汉:华中农业大学, 2014. [11] 苏亚春. 甘蔗应答黑穗病菌侵染的转录组与蛋白组研究及抗性相关基因挖掘[D] . 福州:福建农林大学, 2014. [12] 苏振峰. GH1 β-葡萄糖苷酶在拟南芥和水稻中的生物信息学及表达模式分析[D] . 泰安:山东农业大学, 2014. [13] Ranocha P, Chabannes M, Chamayou S, et al. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar[J] . Plant Physiol, 2002, 129(1):145-55. [14] 王国栋, 陈晓亚. 漆酶的性质、功能、催化机理和应用[J] . 植物学通报, 2003, 20(4):469-475. [15] 王骥, 朱木兰, 卫志明. 棉花漆酶基因在转基因新疆杨中的表达及其对木质素合成的影响[J] . 分子细胞生物学报, 2008, 41(1):11-18. [16] 吴立柱, 王省芬, 等. 酸不可溶性木质素和漆酶在棉花抗黄萎病中的作用[J] . 作物学报, 2014, 40(7):1157-1163. [17] 马森. 谷胱甘肽过氧化物酶和谷胱甘肽转硫酶研究进展[J] . 动物医学进展, 2008, 29(10):53-56. [18] 杨海灵, 聂力嘉, 等. 谷胱甘肽硫转移酶结构与功能研究进展[J] . 成都大学学报:自然科学版, 2006, 25(1):19-24. [19] 王卓, 等. 香蕉3个Tau类谷胱甘肽硫转移酶基因的克隆及序列分析[J] . 热带作物学报, 2013, 34(9):1676-1681. [20] 穆西玉, 张海艳. 不同玉米品种抗感粗缩病与过氧化物酶关系的研究[J] . 吉林农业科学, 2015, 40(3):73-75, 102. [21] Burton RA, Gibeaut DM, et al. Virus-induced silencing of a plant cellulose synthase gene[J] . Plant Cell, 2000, 12(5):691-705. [22] 孟艳艳, 范术丽, 等. ClassⅢ过氧化物酶在植物中的作用及其研究进展[J] . 西北植物学报, 2011, 31(9):1908-1916. [23] 曾蕊, 等. 香蕉与枯萎病菌4号小种互作过程中防御酶活性的变化[J] . 华中农业大学学报, 2014, 33(2):61-64. [24] Lu GY, Guo SG, Zhang HY, et al. Transcriptional profiling of water-melon during its incompatible interaction with Fusarium oxysporum f. sp. niveum[J] . Eur J Plant Pathol, 2011, 131(4):585-601. [25] Wang Z, Zhang JB, Jia CH, et al. De Novo characterization of the banana root transcriptome and analysis of gene expression under Fusarium oxysporum f. sp. cubense tropical race 4 infection[J] . BMC Genomics, 2012, 13(1):650-659. [26] 王贤达, 林雄杰, 胡菡青, 等. 抗菌肽研究及其在植物病害控制中的应用[J] . 福建农业学报, 2014, 29(1):99-104. [27] Jan PS, Huang HY, Chen HM. Expression of a synthesized gene encoding cationic peptide cecropin B in transgenic tomato plants protects against bacterial disease[J] . Appl Environ Microbiol, 2010, 76(3):769-775. [28] Felipe RTA, et al. Responses of transgenic to hamlin sweet orange plants expressing the attacin A gene to Candidatus Liberibacter asiaticus infection[C] . The 2nd International Research Conference on Huanlongbing, Orlando. Florida, 2011:200. [29] Rahanmaeian M, Vilcinskas A. Defence gene expression is potentiated in transgenic barley expressing antifungal peptide metchnikowin throughout powdery mildew challenge[J] . Journal Plant Research, 2012, 125(1):115-124. [30] Shepherd RW, Bass WT, Houtz RL, et al. Phylloplanins of tobacco are defensive proteins deployed on aerial surfaces by short glandular trichomes[J] . Plant Cell, 2005, 17(6):1851-1861. [31] Amme S, Rutten T, Melzer M, et al. A proteome approach defines protective functions of tobacco leaf trichomes[J] . Proteomics, 2005, 5(10):2508-2518. |