[1] Gupta A, Singh VK, Qazi GN, et al. Gluconobacter oxydans:its biotechnological applications[J]. Journal of Molecular Microbiology & Biotechnology, 2001, 3(3):445. [2] Deppenmeier U, Hoffmeister M, Prust C. Biochemistry and biotechnological applications of Gluconobacter strains[J]. Applied Microbiology & Biotechnology, 2002, 60(3):233-242. [3] Robert DH. Recent patents on vitamin C:opportunities for crop improvement and single-step biological manufacture[J]. Recent Patents on Food, Nutrition & Agriculture, 2009, 1(1):39-49. [4] De Muynck, C, Pereira C, Naessens M, et al. The genus Gluconobacter oxydans:comprehensive overview of biochemistry and biotechnological applications[J]. Critical Reviews in Biotechnology, 2007, 27(3):147-171. [5] Prust C, Hoffmeister M, Liesegang H, et al. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans[J]. Nature Biotechnology, 2005, 23:195-200. [6] Deppenmeier U, Ehrenreich A. Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans[J]. Journal of Molecular Microbiology Biotechnology, 2009, 16:69-80. [7] H?lscher T, G?risch H. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H[J]. J Bacteriol, 2006, 188:7668-7676. [8] Joyce, GF. The antiquity of RNA-based evolution[J]. Nature, 2002, 418:214-221. [9] Isaacs FJ, Dwyer DJ, Ding C, et al. Engineered riboregulators enable post-transcriptional control of gene expression[J]. Nature Biotechnology, 2004, 22:841-847. [10] Kruger K, Grabowski PJ, Zaug AJ, et al. Self-splicing RNA:Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena[J]. Cell, 1982, 31:147-157. [11] Doudna JA, Cech TR. The chemical repertoire of natural ribozymes[J]. Nature, 2002, 418:222-228. [12] Ambros V. MicroRNA pathways in flies and worms:Growth, death, fat, stress, and timing[J]. Cell, 2003, 113:673-676. [13] Carrington JC, Ambros V. Role of microRNAs in plant and animal development[J]. Science, 2003, 301:336. [14] Finnegan EJ, Matzke MA. The small RNA world[J]. Journal of Cell Science, 2003, 116:4689-4693. [15] Massé E, Gottesman S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(7):4620-4625. [16] Wassarman KM, Repoila F, Rosenow C, et al. Identification of novel small RNAs using comparative genomics and microarrays[J]. Genes & Development, 2001, 15(13):1637-1651. [17] Desnoyers G, Bouchard MP, Massé E. New insights into small RNA-dependent translational regulation in prokaryotes[J]. Trends in Genetics, 2013, 29(2):92. [18] Kovach ME, Elzer PH, Hill DS, et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes[J]. Gene, 1995, 166(1):175-176. [19] Merfort M, Herrmann U, Bringer-Meyer S, Sahm H. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans[J]. Appl Microbiol Biotechnol, 2006, 73(2):443-451. [20] Rudzinska M, Kowalewska B, Sikorska K. Clinical usefulness of Western blotting and ELISA avidity for the diagnosis of human toxocariasis[J]. Parasite Immunology, 2017, 39(1):e12400. [21] Massé E, Escorcia FE, Gottesman S. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli[J]. Genes & Development, 2003, 17(19):2374-2383. [22] Hasty J, McMillenD, Collins JJ. Engineered gene circuits[J]. Nature, 2002, 420:224-230. [23] Prévost K, Desnoyers G, Jacques JF, et al. Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage[J]. Genes & Development, 2011, 25:385-396. [24] Morita T, Maki K, Aiba H. RNase E-based ribonucleoprotein complexes:mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs[J]. Genes & Development, 2005, 19:2176-2186. [25] Ikeda Y, Yagi M, Morita T, et al. Hfq binding at RhlB-recognition region of RNase E is crucial for the rapid degradation of target mRNAs mediated by sRNAs in Escherichia coli[J]. Molecular Microbiology, 2011, 79(2):419-432. |