[1] Bănică FG, Fogg AG.Chemical sensors and biosensors:fundamentals and applications[M]. Wiley, 2012. [2] Vogt VM.Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae[J]. European Journal of Biochemistry, 1973, 33(1):192-200. [3] Kovaľ T, Østergaard LH, Lehmbeck J, et al.Structural and catalytic properties of S1 nuclease from Aspergillus oryzae responsible for substrate recognition, cleavage, non-specificity, and inhibition[J]. PLoS One, 2016, 11(12):e0168832. [4] Lieber MR.The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair[J]. Bioessays News & Reviews in Molecular Cellular & Developmental Biology, 1997, 19(3):233-240. [5] West SC.Molecular views of recombination proteins and their control[J]. Nat rev mol cell biol, 2003, 4(6):435-445. [6] Marti TM, Fleck O.DNA repair nucleases[J]. Cellular & Molecular Life Sciences Cmls, 2004, 61(3):336-354. [7] Norberg P, Bergström T, Liljeqvist JA.Genotyping of clinical herpes simplex virus type 1 isolates by use of restriction enzymes[J]. Journal of Clinical Microbiology, 2006, 44(12):4511-4514. [8] Grindley ND, Whiteson KL, Rice PA.Mechanisms of site-specific recombination[J]. Annual Review of Biochemistry, 2006, 75(75):567-605. [9] Zhou Z, Zhu J, Zhang L, et al.G-quadruplex-based fluorescent assay of S1 nuclease activity and K+[J]. Anal Chem, 2013, 85(4):2431-2435. [10] Li X, Xu B, Lu H, et al.label-free fluorescence turn-on detection of Pb2+ based on AIE-active quaternary ammonium salt of 9, 10-distyrylanthracene[J]. Analytical Methods, 2012, 5(2):438-441. [11] Hun X, Chen H, Wang W.Design of ultrasensitive chemilumines-cence detection of Lysozyme in cancer cells based on nicking endonuclease signal amplification technology[J]. Biosens Bioelectron, 2010, 26(1):248-254. [12] Zhao C, Wu L, Ren J, et al.A label-free fluorescent turn-on enzymatic amplification assay for DNA detection using Ligand-responsive G-quadruplex formation[J]. Chem Commun, 2011, 47(19):5461-5463. [13] Cui L, Ke G, Zhang WY, et al.A universal platform for sensitive and selective colorimetric DNA detection based on Exo III assisted signal amplification[J]. Biosens Bioelectron, 2011, 26(5):2796-2800. [14] Liu M;Yuan M;Lou X,et al. label-free optical detection of single-base mismatches by the combination of nuclease and gold nanoparticles[J]. American Chemical Society,2011, 26(11)4294-4300. [15] Niu SY, Li QY, Qi LJ, Wang W.Nicking endonuclease and target recycles signal amplification assisted quantum dots for fluorescence detection of DNA[J]. Analytica Chimica Acta, 2010, 680(1):54-58. [16] Ye S, Liang X, Yamamoto Y, et al.Detection of single nucleotide polymorphisms by the combination of nuclease S1 and PNA[J]. Nucleic Acids Research Supplement, 2002, 2(2):235-236. [17] Yoo SM, Kang T, Kim B, et al.Detection of single nucleotide polymorphisms by a gold nanowire-on-film SERS sensor coupled with S1 nuclease treatment[J]. Chemistry, 2011, 17(31):8657-8662. [18] Draz MS, Lu X.Development of a Loop mediated isothermal amplification(LAMP)- surface enhanced raman spectroscopy(SERS)assay for the detection of Salmonella enterica serotype enteritidis[J]. Theranostics, 2016, 6(4):522-532. [19] Guo L, Zhang Z, Tang Y.Cationic conjugated polymers as signal reporter for label-free assay based on targets-mediated aggregation of perylene diimide quencher[J]. Chinese Chemical Letters, 2018, 29(2):305-308. [20] Bao B, Zhu J, Gong L, et al.Sensitive DNA detection using cascade amplification strategy based on conjugated polyelectrolytes and hybridization chain reaction[J]. RSC Advances, 2017, 7(6):3528-3533. [21] Latorre A, Somoza Á.DNA-mediated silver nanoclusters:synthesis, properties and applications[J]. Cheminform, 2012, 13(7):951-958. [22] Petty JT, Story SP, Hsiang JC, et al.DNA-templated molecular silver fluorophores[J]. Journal of Physical Chemistry Letters, 2013, 4(7):1148-1155. [23] Wang X, Li P, He JL, et al.Cytosine-rich oligonucleotide-templated fluorescent silver nanoclusters for sensitive assay of S1 nuclease[J]. Chemical Journal of Chinese Universities, 2017, 38(8):1334-1340. [24] Qi Y, Xiu FR, Wang S, et al.Direct monitoring of enzymatic cleavage and facile chemiluminescence strategy for sensitive detection of nuclease activity[J]. Journal of Luminescence, 2018, 196(4):306-312. [25] Mir TA, Akhtar MH, Gurudatt NG, et al.An arnperometric nanobiosensor for the selective detection of K+-induced dopamine released from living cells[J]. Biosens Bioelectron, 2015, 68(2015):421-428. [26] Sawyers Cl.The cancer biomarker problem[J]. Nature, 2008, 452(7187):548-552. [27] Rossi JJ.New Hope for a MicroRNA therapy for liver cancer[J]. Cell, 2009, 137(6):990-992. [28] Jiang Q, Wang Y, Hao Y, et al.miR2Disease:a manually curated database for microRNA deregulation in human disease[J]. Nucleic Acids Research, 2009, 37(1):D98-104. [29] Tricoli JV, Jacobson JW.MicroRNA:potential for cancer detection, diagnosis, and prognosis[J]. Cancer Research, 2007, 67(10):4553-4555. [30] Ryan BM, Robles AI, Harris CC.Genetic variation in microRNA networks:the implications for cancer research[J]. Nature Reviews Cancer, 2010, 10(6):389-402. [31] Cissell KA, Shrestha S, Deo SK.MicroRNA detection:challenges for the analytical chemist[J]. Anal Chem, 2007, 79(13):4754-4761. [32] Zhou Y, Wang M, Yang Z, et al.Electrochemical biosensor for microRNA detection based on hybridization protection against nuclease S1 digestion[J]. Journal of Solid State Electrochemistry, 2016, 20(2):413-419. [33] Liu Cl, Kong XJ, Yuan J, et al.A dual-amplification fluorescent sensing platform for ultrasensitive assay of nuclease and ATP based on rolling circle replication and exonuclease III-aided recycling[J]. RSC Advances, 2015, 5(92):75055-75061. [34] Xu H, Wang Z.L-Argininamide biosensor based on S1 nuclease hydrolysis signal amplification[J]. Microchim Acta, 2012, 176(1-2):209-216. [35] Yoo SM, Dong MK, Sang YL.Multispot array combined with S1 nuclease-mediated elimination of unpaired nucleotides[J]. Biochip Journal, 2015, 9(2):1-8. [36] Guan Z, Liu J, Bai W, et al.label-free and sensitive fluorescent detection of sequence-specific single-strand DNA based on S1 nuclease cleavage effects[J]. PLoS One, 2014, 9(10):e108401. [37] Tullman J.Protein switches identified from diverse insertion libraries created using S1 nuclease digestion of supercoiled-form plasmid DNA[J]. Biotechnology & Bioengineering, 2011, 108(11):2535-2543. [38] Ding J, Qin W.Potentiometric sensing of nuclease activities and oxidative damage of single-stranded DNA using a polycation-sensitive membrane electrode[J]. Biosens Bioelectron, 2013, 47(13):559-565. [39] Yang X, Pu F, Ren J, et al.DNA-templated ensemble for label-free and real-time fluorescence turn-on detection of enzymatic/oxidative cleavage of single-stranded DNA[J]. Chem Commun, 2011, 47(28):8133-8135. [40] Shen Q, Nie Z, Guo M, et al.Simple and rapid colorimetric sensing of enzymatic cleavage and oxidative damage of single-stranded DNA with unmodified gold nanoparticles as indicator[J]. Chem Commun, 2009, 8(8):929-931. [41] He Y, Jiao B, Tang H.Interaction of single-stranded DNA with graphene oxide:fluorescence study and its application for S1 nuclease detection[J]. RSC Advances, 2014, 4(35):18294-18300. [42] Li J, Zhao Q, Tang Y. label-free fluorescence assay of S1 nuclease and hydroxyl radicals based on water-soluble conjugated polymers and WS2 nanosheets[J]. Sensors, 2016, 16(6):865-873. |