Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (1): 161-169.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0502
Previous Articles Next Articles
ZHANG Yuan1,2, LIANG Jia-hui2, LUO Yun-bo2, TIAN Jing-jing2, TIAN Hong-tao1, XU Wen-tao2
Received:
2018-05-30
Online:
2019-01-26
Published:
2019-01-23
ZHANG Yuan, LIANG Jia-hui, LUO Yun-bo, TIAN Jing-jing, TIAN Hong-tao, XU Wen-tao. Research Progress on Functional Nucleic acid Biosensors Mediated by Terminal Deoxynucleotidyl Transferase[J]. Biotechnology Bulletin, 2019, 35(1): 161-169.
[1] Motea EA, Berdis AJ.Terminal deoxynucleotidyl transferase:The story of a misguided DNA polymerase[J]. BBA - Proteins and Proteomics, 2010, 1804(5):1151-1166. [2] Bollum FJ, Potter VR.Incorporation of thymidine into deoxyribonucleic acid by enzymes from rat tissues[J]. J Biol Chem, 1958, 233(2):478-482. [3] Chang LM.Development of terminal deoxynucleotidyl transferase activity in embryonic calf thymus gland[J]. Biochemical & Biophysical Research Communications, 1971, 44(1):124-131. [4] Barr RD, Sarin PS, Perry SM.Terminal transferase in human bone-marrow lymphocytes[J]. Lancet, 1976, 307(7958):508-509. [5] Srivastav BIS.Association of therminal deoxynucleotidyl transferase activity with chromatin from plant tissue[J]. Biochemical & Biophysical Research Communications, 1972, 48(2):270-273. [6] Khoury JD, Medeiros LJ, Manning JT, et al.CD56(+)TdT(+)blastic natural killer cell tumor of the skin:a primitive systemic malignancy related to myelomonocytic leukemia[J]. Cancer, 2010, 94(9):2401-2408. [7] Coleman MS, Hutton JJ, De SP, et al.Terminal deoxyribonucleotidyl transferase in human leukemia[J]. Biochemical & Biophysical Research Communications, 1975, 62(2):367-375. [8] Gregoire KE, Goldschneider I, Barton RW, et al.Ontogeny of terminal deoxynucleotidyl transferase-positive cells in lymphohemopoietic tissues of rat and mouse[J]. Journal of Immunology, 1979, 123(3):1347-1352. [9] Bollum FJ.Terminal deoxynucleotidyl transferase as a hematopoietic cell marker[J]. Blood, 1979, 54(6):1203-1215. [10] Sachs Z, Aasen G, Dolan M, et al.Double- and triple-hit lymphomas can present with features suggestive of immaturity, including TdT expression, and create diagnostic challenges[J]. Leukemia & Lymphoma, 2016, 57(11):2626-2635. [11] Sur M, Alardati H, Ross C, et al.TdT expression in Merkel cell carcinoma:potential diagnostic pitfall with blastic hematological malignancies and expanded immunohistochemical analysis[J]. Mod Pathol, 2007, 20(11):1113-1120. [12] Hutton JJ, Coleman MS.Terminal deoxynucleotidyl transferase measurements in the differential diagnosis of adult leukaemias[J]. Br J Haematol, 2010, 34(3):447-456. [13] Sarin PS, Anderson PN, Gallo RC.Terminal deoxynucleotidyl transferase activities in human blood leukocytes and lymphoblast cell lines:high levels in Lymphoblast cell lines and in blast cells of some patients with chronic myelogenous leukemia in acute phase[J]. Blood, 1976, 47(1):11-20. [14] Mccaffrey R, Harrison TA, et al.Terminal deoxynucleotidyl transferase activity in human leukemic cells and in normal human thymocytes[J]. N Engl J Med, 1975, 292(15):775-780. [15] Fowler JD, Suo Z.Biochemical, structural, and physiological characterization of terminal deoxynucleotidyl transferase[J]. Cheminform, 2006, 37(37):2092-2110. [16] Aravind L, Koonin EV.DNA polymerase β-like nucleotidyltransfe-rase superfamily:Identification of three new families, classification and evolutionary history[J]. Nucleic Acids Research, 1999, 27(7):1609-1618. [17] Chang LMS, Bollum FJ.Deoxynucleotide polymerizing enzymes of calf thymus gland:IV. Homogeneous terminal deoxynucleotidyl transferase[J]. J Biol Chem, 1971, 246(4):909-916. [18] Sabbioni E. metalloenzyme nature of calg thymus deoxynucleotidyl transferase[J]. FEBS Lett, 1976, 71(2):233-235. [19] Srivastava BI.Deoxynucleotide-polymerizing enzyme activities in T- and B-cells of acute lymphoblastic leukemia origin[J]. Cancer Research, 1976, 36(5):1825-1830. [20] Delarue M, Boulé JB, et al.Crystal structures of a template-indepe-ndent DNA polymerase:murine terminal deoxynucleotidyltransfe-rase[J]. EMBO J, 2002, 21(3):427-439. [21] Liu Z, Li W, Nie Z, et al.Randomly arrayed G-quadruplexes for label-free and real-time assay of enzyme activity[J]. Chem Commun, 2014, 50(52):6875-6878. [22] Anne A, Bonnaudat C, Demaille C, et al.Enzymatic redox 3’-end-labeling of DNA oligonucleotide monolayers on gold surfaces using terminal deoxynucleotidyl transferase(TdT)-mediated single base extension[J]. J Am Chem Soc, 2007, 129:2734-2735. [23] Chi BZ, Liang RP, Zhang L, et al.Sensitive and homogeneous microRNA detection using branched cascade enzymatic amplification[J]. Chem Commun, 2015, 51:10543-10546. [24] Wu H, Liu S, Jiang J, et al.A sensitive electrochemical biosensor for detection of DNA methyltransferase activity by combining DNA methylation-sensitive cleavage and terminal transferase-mediated extension[J]. Chem Commun, 2012, 48(50):6280-6282. [25] Wan Y, Wang P, Su Y, et al.Ultrasensitive electrochemical DNA sensor based on the target induced structural switching and surface-initiated enzymatic polymerization[J]. Biosens Bioelectron, 2014, 55(9):231-236. [26] Ma C, et al.Label-free monitoring of DNA methyltransferase activity based on terminal deoxynucleotidyl transferase using a thioflavin T probe[J]. Mol Cellu Probes, 2016, 30(2):118-121. [27] Xu F, Luo L, Shi H, et al.label-free and sensitive microRNA detection based on a target recycling amplification-integrated superlong poly(thymine)-hosted copper nanoparticle strategy[J]. Analytica Chimica Acta, 2018, 1010:54-61. [28] Lu L, Wang M, Liu LJ, et al.A luminescence switch-on probe for terminal deoxynucleotidyl transferase(TdT)activity detection by using an iridium(III)-based i-motif probe[J]. Chem Commun, 2015, 51(49):9953-9956. [29] Leung KH, He B, Yang C, et al.Development of an aptamer-based sensing platform for metal ions, proteins, and small molecules through terminal deoxynucleotidyl transferase induced G-quadruplex formation[J]. ACS Appl Mater Interfaces, 2015, 7(43):24046-24052. [30] Wang Y, Chen JT, Yan XP.Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals[J]. Anal Chem, 2013, 85(4):2529-2535. [31] Song C, Yang X, Wang K, et al.label-free and non-enzymatic detection of DNA based on hybridization chain reaction amplification and dsDNA-templated copper nanoparticles[J]. Analytica Chimica Acta, 2014, 827(3):74-79. [32] Yin J, He X, Wang K, et al.Label-free and turn-on aptamer strategy for cancer cells detection based on a dna-silver nanocluster fluorescence upon recognition-induced hybridization[J]. Anal Chem, 2013, 85(24):12011-12019. [33] Yuan Y, Li W, Liu Z, et al.A versatile biosensing system for DNA-related enzyme activity assay via the synthesis of silver nanoclusters using enzymatically-generated DNA as template[J]. Biosens Bioelectron, 2014, 61(6):321-327. [34] Hu Y, Zhang Q, Guo Z, et al.In situ grown DNA nanotail-templated silver nanoclusters enabling label-free electrochemical sensing of terminal deoxynucleotidyl transferase activity[J]. Biosens Bioelectron, 2017, 98:91-99. [35] Zhou F, Cui X, et al.Fluorometric determination of the activity and inhibition of terminal deoxynucleotidyl transferase via in-situ formation of copper nanoclusters using enzymatically generated DNA as template[J]. Microchim Acta, 2017(3):773-779. [36] Zhang Q, Hu Y, Xu L, et al.Signal-on electrochemical assay for label-free detection of TdT and BamHI activity based on grown DNA nanowire-templated copper nanoclusters[J]. Analytical & BioAnal Chem, 2017, 409(28):6677-6688. [37] Hu Y, Shen Q, Li W, et al.A TdT-mediated cascade signal amplification strategy based on dendritic DNA matrix for label-free multifunctional electrochemical biosensing[J]. Biosens Bioelectron, 2015, 63:331-338. [38] Wei W, Liu S, Sun X, et al.Ultrasensitive electrochemical DNAzyme sensor for lead ion based on cleavage-induced template-independent polymerization and alkaline phosphatase amplification[J]. Biosens Bioelectron, 2016, 83:33-38. [39] Tian J, et al.Visual single cell detection of dual-pathogens based on multiplex super PCR(MS-PCR)and asymmetric tailing HCR(AT-HCR)[J]. Sens Actuators B Chem, 2018, 260:870-876. [40] Miao M, et al.Terminal deoxynucleotidyl transferase-induced DNA- zyme nanowire sensor for colorimetric detection of lipopolysaccha-rides[J]. Sens Actuators B Chem, 2018, 256:790-796. [41] Zhang Y, Li Q, Li C, et al.Label-free and high-throughput bioluminescent detection of uracil-DNA glycosylase in cancer cells through tricyclic cascade signal amplification[J]. Chem Commun, 2018, 51:6991-6994. [42] Yuan PX, Deng SY, Zheng CY, et al.In situ formed copper nanoparticles templated by TdT-mediated DNA for enhanced SPR sensor-based DNA assay[J]. Biosens Bioelectron, 2017, 97:1-7. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | LI Ren-han, ZHANG Le-le, LIU Chun-li, LIU Xiu-xia, BAI Zhong-hu, YANG Yan-kun, LI Ye. Development of an L-tryptophan Biosensor Based on the Violacein Biosynthesis Pathway [J]. Biotechnology Bulletin, 2023, 39(10): 80-92. |
[3] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[4] | WANG Peng-fei, YANG Min, ZHU Long-jiao, XU Wen-tao. Advances in Biosensors Based on Platinum Nanoclusters [J]. Biotechnology Bulletin, 2021, 37(12): 235-242. |
[5] | ZHAO Ying, WANG Nan, LU An-xiang, FENG Xiao-yuan, GUO Xiao-jun, LUAN Yun-xia. Application in the Detection of Fungal Toxins by Nucleic Acid Aptamer Lateral Flow Chromatography Analysis Technique [J]. Biotechnology Bulletin, 2020, 36(8): 217-227. |
[6] | FANG Shun-yan, SONG Dan, LIU Yan-ping, XU Wen-juan, LIU Jia-yao, HAN Xiang-zhi, LONG Feng. Study on Evanescent Wave Fluorescence Aptasensor for Direct and Rapid Detection of Escherichia coli O157∶H7 [J]. Biotechnology Bulletin, 2020, 36(7): 228-234. |
[7] | YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang. Dynamic Control:An Efficient Strategy for Metabolically Engineering Microbial Cell Factories [J]. Biotechnology Bulletin, 2020, 36(6): 1-12. |
[8] | YANG Min, LI Shu-ting, YANG Wen-ping, LI Xiang-yang, XU Wen-tao. Research Progress on Functional Nucleic Acid Biosensors Mediated by DNA/Silver Nanoclusters [J]. Biotechnology Bulletin, 2020, 36(6): 245-254. |
[9] | LIU Su-yue, TIAN Jing-jing, TIAN Hong-tao, XU Wen-tao. Terbium(III)and Its Complexes:from Luminescent Properties to Sensing and Bioimaging Applications [J]. Biotechnology Bulletin, 2020, 36(4): 192-207. |
[10] | SUN Yu-ge, LI Chen-wei, DU Zai-hui, XU Wen-tao. Research Progress on FEN1-mediated Functional Nucleic Acid Biosensors [J]. Biotechnology Bulletin, 2020, 36(4): 208-224. |
[11] | WU Ya, XU Zhi-hui, ZHANG Biao, ZHAO Dong-fang, CAO Wen-xin, ZHANG Xing-ping. Research Progress of Nucleic Acid Aptamer Optical Biosensor in Kanamycin Detection [J]. Biotechnology Bulletin, 2020, 36(1): 193-201. |
[12] | XIAO Bing, LUO Yun-bo, HUANG Kun-lun, ZHANG Yuan, XU Wen-tao. Research Progress in the Quantitative and Unitive Detecting Technologies Based on Functional Nucleic Acid and Labeled Fluorescence [J]. Biotechnology Bulletin, 2019, 35(7): 213-221. |
[13] | XIE Yin-xia, WANG Wei-ran, CHENG Nan, XU Wen-tao. Research Progress on Electrical Signal Molecules in Electrochemical Functional Nucleic Acids Biosensors [J]. Biotechnology Bulletin, 2019, 35(5): 157-169. |
[14] | XIAO Bing, LIU Bang, LUO Yun-bo, HUANG Kun-lun, ZHANG Yuan, LI Xia-ying, ZHANG Xiu-jie, XU Wen-tao, ZHOU Xiang. Research Progress in Quantitative and Unitive Detecting Technologies of Functional Nucleic Acid and Label-Free Fluorescence [J]. Biotechnology Bulletin, 2019, 35(3): 194-202. |
[15] | LI Chen-wei, DU Zai-hui, LIN Shao-hua, LUO Yun-bo, XU Wen-tao. Research Progress on Functional Nucleic Acids for Detecting Pb2+ [J]. Biotechnology Bulletin, 2019, 35(1): 131-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||