Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (1): 170-186.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0524
Previous Articles Next Articles
LIU Xing-yu1, LI Chun-hui1, TIAN Jing-jing1,2, SHAO Xiang-Li1,2, LUO Yun-bo1,2, XU Wen-tao1,2
Received:
2018-06-07
Online:
2019-01-26
Published:
2019-01-23
LIU Xing-yu, LI Chun-hui, TIAN Jing-jing, SHAO Xiang-Li, LUO Yun-bo, XU Wen-tao. Research Progress on Fluorescent Copper Nanoparticles Mediated Biosensors[J]. Biotechnology Bulletin, 2019, 35(1): 170-186.
[1] Rotaru A, Dutta S, Jentzsch E, et al.Selective dsDNA-templated formation of copper nanoparticles in solution[J]. Angewandte Chemie, 2010, 49(33):5665-5667. [2] Song QW, Shi Y, He DC, et al.Sequence-dependent dsDNA-templated formation of fluorescent copper nanoparticles[J]. Chemistry, 2015, 21(6):2417-2422. [3] Qing ZH, He XX, He DM, et al.Poly(thymine)-templated selective formation of fluorescent copper nanoparticles[J]. Angewandte Chemie, 2013, 52(37):9719-9722. [4] Qing ZH, Qing TP, Mao ZG, et al.dsDNA-templated fluorescent copper nanoparticles:poly(AT-TA)-dependent formation[J]. RSC Advances, 2014, 4(105):61092-61095. [5] Chen JH, Liu J, Fang ZY, et al.Random dsDNA-templated formation of copper nanoparticles as novel fluorescence probes for label-free lead ions detection[J]. Chem Comm, 2012, 48(7):1057-1059. [6] Qing ZH, Qing TP, Mao ZG, et al.dsDNA-specific fluorescent copper nanoparticles as a‘green’nano-dye for polymerization-mediated biochemical analysis[J]. Chem Comm, 2014, 50(84):12746-12748. [7] Zhang L, Cai QY, Li J, et al.A label-free method for detecting biothiols based on poly(thymine)-templated copper nanoparticles[J]. Biosensors and Bioelectronics, 2015, 69:77-82. [8] Han BY, Xiang RC, Hou XF, et al.One-step rapid synthesis of single thymine-templated fluorescent copper nanoclusters for “turn on” detection of Mn2+[J]. Analytical Methods, 2017, 9(17):2590-2595. [9] Liu J, Chen JH, Fang ZY, et al.A simple and sensitive sensor for rapid detection of sulfide anions using DNA-templated copper nanoparticles as fluorescent probes[J]. Analyst, 2012, 137(23):5502-5505. [10] Chen ZZ, Niu YX, Cheng GY, et al.Fast, highly sensitive and selective assay of iodide ions with single-stranded DNA-templated copper nanoparticles as a fluorescent probe for its application in Kunming mice samples[J]. Analyst, 2017, 142(15):2781-2785. [11] Zhao J, Hu SS, Cao Y, et al.Electrochemical detection of protein based on hybridization chain re-action-assisted formation of copper nanoparticles[J]. Biosensors and Bioelectronics, 2015, 66:327-331. [12] Song CX, Yang XH, Wang KM, et al.label-free and non-enzymatic detection of DNA based on hybridization chain reaction amplification and dsDNA-templated copper[J]. Analytica Chimica Acta, 2014, 827(3):74-79. [13] Xu FZ, Shi H, He XX, et al.Concatemeric dsDNA-templated copper nanoparticles strategy with improved sensitivity and stability based on rolling circle replication and its application in microRNA detection[J]. Anal Chem, 2014, 86(14):6976-6982. [14] Wang XP, Yin BC, Ye BC.A novel fluorescence probe of dsDNA-templated copper nanoclusters for quantitative detection of microsRNAs[J]. RSC Advances, 2013, 3(23):8633-8636. [15] Hu R, Liu YR, Kong RM, et al.Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for Label free nuclease enzyme detection[J]. Biosensors and Bioelectronics, 2013, 42(4):31-35. [16] Zhang H, Lin ZH, Su XG. label-free detection of exonuclease III by using dsDNA-templated copper nanoparticles as fluorescent probe[J]. Talanta, 2015, 131:59-63. [17] Zhang ll, Zhao JJ, Zhang H, et al. Double strand DNA-templated copper nanoparticle as a novel fluorescence indicator for label-free detection of polynucleotide kinase activity[J]. Biosensors and Bioelectronics, 2013, 44(18):6-9. [18] Zhao HZ, Dong JJ, Zhou FL, et al.One facile fluorescence strategy for sensitive detection of endonuclease activity using DNA-templated copper nanoclusters as signal indicators[J]. Sensors and Actuators B, 2017, 238:828-833. [19] Qing TP, He XX, He DG, et al.Dumbbell DNA-templated CuNCs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNA repair[J]. Biosensors and Bioelectronics, 2017, 94:456-463. [20] Xu FZ, Luo L, Shi H, et al.label-free and sensitive microRNA detection based on a target recycling amplification-integrated superlong poly(thymine)-hosted copper nanoparticle strategy[J]. Analytica Chimica Acta, 2018, 1010:54-61. [21] Qing ZH, Qing TP, Mao ZG, et al.dsDNA-specific fluorescent copper nanoparticles as a‘green’nano-dye for polymerization-mediated biochemical analysis[J]. Chem Comm, 2014, 50:12746-12748. [22] Ou LJ, Li XY, Li LJ, et al.A sensitive assay for trypsin using poly(thymine)-templated copper nanoparticles as fluorescent probes[J]. Analyst, 2015, 140(6):1871-1875. [23] Wang L, Shi FP, Li Y.An ultra-sensitive and label-free fluorescent probe for trypsin and inhibitor based on DNA hosted Cu nanoclusters[J]. Sensors and Actuators B:Chemical, 2016, 222:945-951. [24] Zhang ll, Zhao JJ, Duan M, et al. Inhibition of dsDNA-templated copper nanoparticles by pyrophosphate as a label-free fluorescent strategy for alkaline phosphatase assay[J]. Anal Chem, 2013, 85(8):3797-3801. [25] Li JY, Si L, Bao JC, et al.Fluorescence regulation of poly(thymine)-templated copper nanoparticles via an enzyme-triggered reaction towards sensitive and selective detection of alkaline phosphatase[J]. Anal Chem, 2017, 89(6):3681-3686. [26] Chi BZ, Liang RP, Qiu WB, et al.Direct fluorescence detection of microRNA based on enzymatically engineered primer extension poly-thymine(EPEPT)reaction using copper nanoparticles as nano-dye[J]. Biosensors and Bioelectronics, 2107, 87:216-221. [27] Chen J, Xu Y, Ji XH, et al.Enzymatic polymerization-based formation of fluorescent copper nanoparticles for the nuclease assay[J]. Sensors and Actuators B, 2017, 239:262-269. [28] Wang HB, Zhang HD, Chen Y, et al.A fluorescent biosensor for protein detection based on poly(thymine)- templated copper nanoparticles and terminal protection of small molecule-linked DNA[J]. Biosensors and Bioelectronics, 2015, 74(2):581-586. [29] Sheng FF, Zhang XJ, Wang GF.Novel ultrasensitive homogeneous electrochemical aptasensor based on dsDNA-templated copper nanoparticles for the detection of ractopamine[J]. Journal of Materials Chemistry B, 2017, 5(1):53-61. [30] Wang HB, Zhang HD, Chen Y, et al.A label-free and ultrasensitive fluorescent sensor for dopamine detection based on double-stranded DNA templated copper manoparticles[J]. Sensors and Actuators B:Chemical, 2015, 220:146-153. [31] Zhu HW, Dai WX, Yu XD, et al.Poly thymine stabilized copper nanoclusters as a fluorescence probe for melamine sensing[J]. Talanta, 2015, 144:642-647. [32] Wang ZX, Han P, Mao XX, et al.Sensitive detection of glutathione by using DNA-templated copper nanoparticles as electrochemical reporters[J]. Sensors and Actuators B, 2017, 238:325-330. [33] Yang LZ, Wang YJ, Li BX, et al.High-throughput identification of telomere-binding ligands based on the fluorescence regulation of DNA-copper nanoparticles[J]. Biosensors and Bioelectronics, 2017, 87:915-917. [34] Sun FF, You Y, Liu J, et al.DNA three-way junction for differentiation of single nucleotide polymorphisms with fluorescent copper nanoparticles[J]. Chemistry-A European Journal, 2017, 23(29):6979-6982. [35] Borghei Y, Hosseini M, Ganjali MR, et al.Label-free fluorescent detection of microRNA-155 based on synthesis of hairpin DNA-templated copper nanoclusters by etching(top-down approach)[J]. Sensors and Actuators B, 2017, 248:133-139. [36] Qing ZH, Zhu LX, Yang S, et al.In situ formation of fluorescent copper nanoparticles for ultrafast zero-background Cu2+ detection and its toxicides screening[J]. Biosensors and Bioelectronics, 2016, 78:471-476. [37] Zhou ZX, Du Y, Dong SJ.Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label-free aptamer sensor[J]. Anal Chem, 2011, 83(13):5122-5127. [38] Song QW, Wang RH, Sun FF, et al.A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles[J]. Biosensors and Bioelectronics, 2017, 87:760-763. [39] Cao JP, Wang W, Bo B, et al.A dual-signal strategy for the solid detection of both small molecules and proteins based on magnetic separation and highly fluorescent copper nanoclusters[J]. Biosensors and Bioelectronics, 2017, 90:534-541. [40] Mao ZG, Qing ZH, Qing TP, et al.Poly(thymine)-templated copper nanoparticles as a fluorescent indicator for hydrogen peroxide and oxidase-based biosensing[J]. Anal Chem, 2015, 87(14):7454-7460. [41] Chen J, Ji XH, He ZK.Smart composite reagent composed of double-stranded DNA- templated copper nanoparticle and SYBR green I for hydrogen peroxide related biosensing[J]. Anal Chem, 2017, 89(7):3988-3995. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[3] | LI Xin-yi, JIANG Chun-xiu, XUE Li, JIANG Hong-tao, YAO Wei, DENG Zu-hu, ZHANG Mu-qing, YU Fan. Enhancing Hybridization Signal of Sugarcane Chromosome Oligonucleotide Probe via Multiple Fluorescence Labeled Primers [J]. Biotechnology Bulletin, 2023, 39(5): 103-111. |
[4] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
[5] | CAI Meng-xian, GAO Zuo-min, HU Li-juan, FENG Qun, WANG Hong-cheng, ZHU Bin. Development and Genetic Analysis of Two Nullisomic Lines(NC1 and NC2)in Natural Brassica napus [J]. Biotechnology Bulletin, 2023, 39(3): 81-88. |
[6] | LI Ren-han, ZHANG Le-le, LIU Chun-li, LIU Xiu-xia, BAI Zhong-hu, YANG Yan-kun, LI Ye. Development of an L-tryptophan Biosensor Based on the Violacein Biosynthesis Pathway [J]. Biotechnology Bulletin, 2023, 39(10): 80-92. |
[7] | LIU Jin-sheng, CHEN Zhen-ya, HUO Yi-xin, GUO Shu-yuan. Application of FACS Technology in the Directed Evolution of Enzyme [J]. Biotechnology Bulletin, 2023, 39(10): 93-106. |
[8] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[9] | HU Hai-yang, YING Wan-qin, HE Jun, LV Zhi-xian, XIE Xiao-ping, DENG Zhong-liang. Establishment and Application of ERA Real-time Fluorescence Method for Rapid Detection of Mycoplasma pneumoniae [J]. Biotechnology Bulletin, 2022, 38(9): 264-270. |
[10] | SUO Qing-qing, WU Nan, YANG Hui, LI Li, WANG Xi-feng. Prokaryotic Expression,Antibody Preparation and Application of Rice Caffeoyl Coenzyme A-O-methyltransferase Gene [J]. Biotechnology Bulletin, 2022, 38(8): 135-141. |
[11] | ZHOU Zi-qi, ZHANG Yang-zi, LAN Xin-yue, LIU Yang-er, ZHU Long-jiao, XU Wen-tao. Selection and Application of Light-up Nucleic Acid Aptamers [J]. Biotechnology Bulletin, 2022, 38(5): 240-247. |
[12] | ZU Guo-qiang, HU Zhe, WANG Qi, LI Guang-zhe, HAO Lin. Regulatory Role of Burkholderia sp. GD17 in Rice Seedling’s Responses to Cadmium Stress [J]. Biotechnology Bulletin, 2022, 38(4): 153-162. |
[13] | PENG Guo-ying, HU Liang, HUANG Chao, YANG Kun, WAN Wei, HUANG Chang-gan. Transcriptome Analysis of Response to Heavy Metal Copper Stress in Setcreasea purpurea Root Tissue [J]. Biotechnology Bulletin, 2022, 38(2): 83-94. |
[14] | LIU Ning-ning, WANG Xin-xin, LAN Xin-yue, CHU Hua-shuo, CHEN Xu, CHANG Shi-min, LI Teng-fei, XU Wen-tao. G-Triplex Visualization Nucleic Acid Sensor for the Detection of Tetracycline [J]. Biotechnology Bulletin, 2022, 38(10): 106-114. |
[15] | WU Kun-kun, XU Xing, JI Ce, REN Jian-feng, LI Wei-ming, ZHANG Qing-hua. Eukaryotic Expression Vector Construction of Danio rerio notch3 Gene and Its Expression Analysis [J]. Biotechnology Bulletin, 2022, 38(1): 179-186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||