Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (10): 1-7.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1167
YANG Dan(), WANG Gang(), WANG Wu-teng, FAN Ya-jun, XIAO Wei-wei, ZHANG Si-qi, LI Qian, JI Jing()
Received:
2019-12-02
Online:
2020-10-26
Published:
2020-11-02
Contact:
WANG Gang,JI Jing
E-mail:yangdan_tju@163.com;gangwang@tju.edu.cn;jijing@tju.edu.cn
YANG Dan, WANG Gang, WANG Wu-teng, FAN Ya-jun, XIAO Wei-wei, ZHANG Si-qi, LI Qian, JI Jing. Physiological Responses of Soybean to Phenanthrene and Its Tolerance Mechanism[J]. Biotechnology Bulletin, 2020, 36(10): 1-7.
菲浓度/ (μmol?L-1) | 叶片 | 根 | ||||
---|---|---|---|---|---|---|
鲜重/g | 干重/g | 鲜重/g | 干重/g | |||
CK | 1.28±0.15 b | 0.32±0.07 b | 0.94± 0.07 a | 0.38±0.08 a | ||
P25 | 1.49±0.05 a | 0.45±0.03 a | 0.91±0.05 a | 0.39±0.07 a | ||
P50 | 1.54±0.11 a | 0.48±0.07 a | 0.85±0.12 a | 0.38±0.04 a | ||
P75 | 1.68±0.05 a | 0.55±0.09 a | 0.85±0.07 a | 0.35±0.07 a | ||
P100 | 1.05±0.11 c | 0.18±0.04 c | 0.80±0.06 a | 0.32±0.02 a |
菲浓度/ (μmol?L-1) | 叶片 | 根 | ||||
---|---|---|---|---|---|---|
鲜重/g | 干重/g | 鲜重/g | 干重/g | |||
CK | 1.28±0.15 b | 0.32±0.07 b | 0.94± 0.07 a | 0.38±0.08 a | ||
P25 | 1.49±0.05 a | 0.45±0.03 a | 0.91±0.05 a | 0.39±0.07 a | ||
P50 | 1.54±0.11 a | 0.48±0.07 a | 0.85±0.12 a | 0.38±0.04 a | ||
P75 | 1.68±0.05 a | 0.55±0.09 a | 0.85±0.07 a | 0.35±0.07 a | ||
P100 | 1.05±0.11 c | 0.18±0.04 c | 0.80±0.06 a | 0.32±0.02 a |
[1] | 汪祖丞, 刘敏, 杨毅, 等. 菲在长江口的多介质归趋模[J]. 环境科学, 2011,32(8):2444-2449. |
Wang ZC, Liu M, Yang Y, et al. Simulation of multimedia fate of phenanthrene in the Yangtze estuary[J]. Environmental Science, 2011,32(8):2444-2449. | |
[2] | 欧冬妮. 长江口滨岸多环芳烃(PAHs)多相分布特征与源解析研究[D]. 上海:华东师范大学, 2007. |
Ou DN. Multi-media distribution and sources identification of polycyclic aromatic hydrocarbons(PAHs) in the Yangtze estuarine and coastal ecosystem[D]. Shanghai:East China Normal University, 2007. | |
[3] | 占新华, 周立祥, 万寅婧, 等. 水溶性有机物对植物吸收菲的影响及其机制研究[J]. 环境科学, 2006,27(9):1884-1888. |
Zhan XH, Zhou LX, Wan YJ, et al. Impact of dissolved organic matter on plant uptake of phenanthrene and its mechanisms[J]. Environmental Science, 2006,27(9):1884-1888. | |
[4] | 凌婉婷, 高彦征, 李秋玲, 等. 植物对水中菲和芘的吸收[J]. 生态学报, 2006(10):3332-3338. |
Ling WT, Gao YZ, Li QL, et al. Uptake of phenanthrene and pyrene by ryegrass from water[J]. Acta Ecologica Sinica, 2006(10):3332-3338. | |
[5] | 徐圣友, 陈英旭, 林琦, 等. 玉米对土壤中菲芘修复作用的初步研究[J]. 土壤学报, 2006(2):226-232. |
Xu SY, Chen YX, Lin Q, et al. Remediation of phenanthrene and pyrene-contaminated soil by growing maize (Zea mays L.)[J]. Acta Pedologica Sinica, 2006(2):226-232. | |
[6] |
Shi T, Tian K, Bao H, et al. Variation in foliar uptake of polycyclic aromatic hydrocarbons in six varieties of winter wheat[J]. Environmental Science and Pollution Research International, 2017,24(35):27215-27224.
doi: 10.1007/s11356-017-0312-8 URL pmid: 28965195 |
[7] |
Zezulka S, Klems M, Kummerová M. Root and foliar uptake, translocation, and distribution of[14C]fluoranthene in pea plants(Pisum sativum)[J]. Environmental Toxicology and Chemistry, 2014,33(10):2308-2312.
URL pmid: 24975487 |
[8] | Pilon-Smits E. Phytoremediation[J]. Annual Review of Plant Biology, 2005,56(1):15-39. |
[9] | Yin XM, Liang X, Xu GH, et al. Effect of phenanthrene uptake on membrane potential in roots of soybean, wheat and carrot[J]. Environmental and Experimental Botany, 2014,99:53-58. |
[10] | 崔琼, 盛春岩, 周丽娟. 提高大豆种植生产效益的栽培技术[J]. 中国科技信息, 2019(17): 49, 52. |
Cui Q, Sheng CY, Zhou LJ. Cultivation techniques to improve soybean planting and production benefits[J]. China Science and Technology Information, 2019(17): 49, 52. | |
[11] |
Li JH, Gao Y, Wu SC, et al. Physiological and biochemical respo-nses of rice(Oryza sativa L.)to phenanthrene and pyrene.[J]. Int J Phytoremediation, 2008,10(2):104-116.
doi: 10.1080/15226510801913587 URL pmid: 18709924 |
[12] | Li QH, Lu YL, Shi YJ, et al. Combined effects of cadmium and fluoranthene on germination, growth and photosynjournal of soybean seedlings[J]. J Environ Sci, 2013,25(9):1936-1946. |
[13] |
Li Q, Wang G, Wang YR, et al. Foliar application of salicylic acid alleviate the cadmium toxicity by modulation the reactive oxygen species in potato[J]. Ecotoxicology and Environmental Safety, 2019,172:317-325.
URL pmid: 30721875 |
[14] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 261-263. |
Li HS. Principles and techniques of plant physiology and biochemistry experiment[M]. Beijing: Higher Education Press, 2000: 261-263. | |
[15] |
Ma ZG, An T, Zhu XR, et al. GR1-like gene expression in Lycium chinense was regulated by cadmium-induced endogenous jasmonic acids accumulation[J]. Plant Cell Reports, 2017,36(9):1457-1476.
URL pmid: 28656324 |
[16] | Zhan XH, Ma HL, Zhou LX, et al. Accumulation of phenanthrene by roots of intact wheat(Triticum acstivnm L.)seedlings:passive or active uptake[J]. BMC Plant Biology, 2010,10(1):52. |
[17] | 王红菊, 李倩倩, 沈羽, 等. 大豆和小麦根系对菲的吸持作用及其生物有效性[J]. 环境科学, 2017,38(6):2561-2567. |
Wang HJ, Li QQ, Shen Y, et al. Sorption of phenanthrene to soybean and wheat roots and the bioavailability of sorbed phenanthrene[J]. Environmental Science, 2017,38(6):2561-2567. | |
[18] | 李玉龙, 刘永军. 萘、菲、芘在土壤中的降解及其对植物生长的影响[J]. 西北农林科技大学学报:自然科学版, 2016,44(3):96-102. |
Li YL, Liu YJ. Degradation of naphthalene, phenanthrene, and pyrene in soil and their effects on plant growth[J]. Journal of Northwest A&F University:Natural Science Edition, 2016,44(3):96-102. | |
[19] | 钟建丹, 陈红春, 罗春燕, 等. 碳纳米管与菲暴露对水稻发芽及幼苗生长的影响[J]. 农业环境科学学报, 2018,37(10):2110-2117. |
Zhong JD, Chen HC, Luo CY, et al. Exposure to carbon nanotube and phenanthrene:Impact on germination and seedling growth of rice[J]. Journal of Agro-Environment Science, 2018,37(10):2110-2117. | |
[20] | Chiapusio G, Pujol S, Toussaint ML, et al. Phenanthrene toxicity and dissipation in rhizosphere of grassland plants(Lolium perenne L. and Trifolium pratense L.)in three spiked soils[J]. Plant and Soil, 2007,294(1-2):103-112. |
[21] | Liu H, Weisman D, Ye YB, et al. An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana[J]. Plant Science, 2008,176(3):375-382. |
[22] | Liu W, Li PJ, Zhou QX, et al. Effect of short-term phenanthrene stress on SOD activities and MDA contents in soybean (Glycine max)seedling[J]. Chinese Journal of Applied Ecology, 2003(4):581-584. |
[23] |
Shen Y, Li J, Gu R, et al. Phenanthrene-triggered Chlorosis is caused by elevated Chlorophyll degradation and leaf moisture[J]. Environ Pollut, 2017,220(Pt B):1311-1321.
URL pmid: 27836478 |
[24] |
Shen Y, Li J, Gu R, et al. Carotenoid and superoxide dismutase are the most effective antioxidants participating in ROS scavenging in phenanthrene accumulated wheat leaf[J]. Chemosphere, 2018,197:513-525.
URL pmid: 29407813 |
[25] | Shen Y, Li J, Shi S, et al. Application of carotenoid to alleviate the oxidative stress caused by phenanthrene in wheat[J]. Environmental Science and Pollution Research International, 2019,26(4):3595-3602. |
[26] | Xin M, Dao HL, Yi X, et al. Effects of phenanthrene on chemical composition and enzyme activity in fresh tea leaves[J]. Food Chemistry, 2008,115(2):569-573. |
[27] |
Ron M. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002,7(9):405-410.
URL pmid: 12234732 |
[28] |
Yin Y, Wang XR, Yang LY, et al. Bioaccumulation and ROS generation in Coontail Ceratophyllum demersum L. exposed to phenanthrene[J]. Ecotoxicology, 2010,19(6):1102-1110.
doi: 10.1007/s10646-010-0492-1 URL pmid: 20390349 |
[29] | 傅聿青, 贾漫丽, 王军, 等. NaCl胁迫下2个桑树品种的脯氨酸、可溶性糖、可溶性蛋白含量变化研究[J]. 林业与生态科学, 2018,33(3):306-310, 321. |
Fu YQ, Jia ML, Wang J, et al. Comparison the changes of proline, soluble sugar and soluble protein contents in 2 mulberry varieties under NaCl stress[J]. Forestry and Ecological Sciences, 2018,33(3):306-310, 321. |
[1] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[2] | LI Wen-chen, LIU Xin, KANG Yue, LI Wei, QI Ze-zheng, YU Lu, WANG Fang. Optimization and Application of Tobacco Rattle Virus-induced Gene Silencing System in Soybean [J]. Biotechnology Bulletin, 2023, 39(7): 143-150. |
[3] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[4] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[5] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[6] | CHEN Yi-bo, YANG Wan-ming, YUE Ai-qin, WANG Li-xiang, DU Wei-jun, WANG Min. Construction of Soybean Genetic Map Based on SLAF Markers and QTL Mapping Analysis of Salt Tolerance at Seedling Stage [J]. Biotechnology Bulletin, 2023, 39(2): 70-79. |
[7] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[8] | BAI Miao, TIAN Wen-qing, WU Shuai, WANG Min, WANG Li-xiang, YUE Ai-qin, NIU Jing-ping, ZHANG Yong-po, GAO Chun-yan, ZHANG Wu-xia, GUO Shu-jin, DU Wei-jun, ZHAO Jin-zhong. Effects of Hormonal and Adversely Stress on Vitamin E and γ-TMT Gene Expression in Soybeans [J]. Biotechnology Bulletin, 2023, 39(10): 148-162. |
[9] | YU Hui-lin, WU Kong-ming. Commercialization Strategy of Transgenic Soybean in China [J]. Biotechnology Bulletin, 2023, 39(1): 1-15. |
[10] | GUO Bin-hui, SONG Li. Transcription of Ethylene Biosynthesis and Signaling Associated Genes in Response to Heterodera glycine Infection [J]. Biotechnology Bulletin, 2022, 38(8): 150-158. |
[11] | SHI Guang-cheng, YANG Wan-ming, DU Wei-jun, WANG Min. Screening of Salt-tolerant Soybean Germplasm and Physiological Characteristics Analysis of Its Salt Tolerance [J]. Biotechnology Bulletin, 2022, 38(4): 174-183. |
[12] | HAN Shao-jie, ZHENG Jing-wu. Research Advances on the Functional Study of Host Resistance Genes to Heterodera glycines [J]. Biotechnology Bulletin, 2021, 37(7): 14-24. |
[13] | LI Chun-jie, WANG Cong-li. Recognition Mechanism of Plant-parasitic Nematodes in Response to Semiochemicals [J]. Biotechnology Bulletin, 2021, 37(7): 35-44. |
[14] | WANG Hui, ZHANG Shun-bin, JIN He, WANG Han, ZHANG Geng-hua, XIA Shi-ning, CHEN Jing-sheng, DUAN Yu-xi. Potential Function of 4-coumaric Acid-CoA Ligase in Response to Soybean Cyst Nematode Stress [J]. Biotechnology Bulletin, 2021, 37(7): 71-80. |
[15] | LIANG Ye, HE Chu-ting, YANG Yue, ZHANG Yu-fen, JIANG Fan. Effects of Inoculation of Rhizobacteria Containing ACC Deaminase on Soybean Growth Under Alkaline Stress [J]. Biotechnology Bulletin, 2020, 36(9): 100-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||