Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (3): 226-233.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0523
Previous Articles Next Articles
XIONG He-li(), SHA Qian, LIU Shao-na, XIANG De-cai, ZHANG Bin, ZHAO Zhi-yong()
Received:
2021-04-20
Online:
2022-03-26
Published:
2022-04-06
Contact:
ZHAO Zhi-yong
E-mail:helihewei@163.com;zhaozhiyong988@163.com
XIONG He-li, SHA Qian, LIU Shao-na, XIANG De-cai, ZHANG Bin, ZHAO Zhi-yong. Application of Single-cell Transcriptome Sequencing in Animals[J]. Biotechnology Bulletin, 2022, 38(3): 226-233.
[1] |
Tang F, Barbacioru C, Nordman E, et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell[J]. Nat Protoc, 2010, 5(3):516-535.
doi: 10.1038/nprot.2009.236 URL |
[2] | 周子茗, 郭国骥. 细胞图谱:解码人体基本单元的奥秘[J]. 科学, 2020, 72(4):30-32, 4. |
Zhou ZM, Guo GJ. Cell atlas:decoding the basic unit of the human body[J]. Science, 2020, 72(4):30-32, 4.
doi: 10.1126/science.72.1854.30.b URL |
|
[3] | Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5):377-382. |
[4] |
Kolodziejczyk AA, Kim JK, Svensson V, et al. The technology and biology of single-cell RNA sequencing[J]. Mol Cell, 2015, 58(4):610-620.
doi: 10.1016/j.molcel.2015.04.005 pmid: 26000846 |
[5] | Olsen TK, Baryawno N. Introduction to single-cell RNA sequencing[J]. Curr Protoc Mol Biol, 2018, 122(1):e57. |
[6] |
Hedlund E, Deng Q. Single-cell RNA sequencing:Technical advancements and biological applications[J]. Mol Aspects Med, 2018, 59:36-46.
doi: S0098-2997(17)30053-5 pmid: 28754496 |
[7] | Shum EY, Walczak EM, Chang C, et al. Quantitation of mRNA transcripts and proteins using the BD rhapsodyTM single-cell analysis system[J]. Adv Exp Med Biol, 2019, 1129:63-79. |
[8] | 王权, 王铸, 张振, 等. 单细胞测序的技术概述[J]. 中国医药导刊, 2020, 22(7):433-439. |
Wang Q, Wang Z, Zhang Z, et al. Overview of the technology of single cell sequencing[J]. Chin J Med Guide, 2020, 22(7):433-439. | |
[9] | 文路, 汤富酬. 单细胞转录组分析研究进展[J]. 生命科学, 2014, 26(3):228-233. |
Wen L, Tang FC. Recent progresses in single-cell transcriptome analysis[J]. Chin Bull Life Sci, 2014, 26(3):228-233. | |
[10] | Ziegenhain C, Vieth B, Parekh S, et al. Comparative analysis of single-cell RNA sequencing methods[J]. Mol Cell, 2017,65(4):631- 643.e4. |
[11] |
Ding J, Adiconis X, Simmons SK, et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods[J]. Nat Biotechnol, 2020, 38(6):737-746.
doi: 10.1038/s41587-020-0465-8 URL |
[12] |
Chen X, Love JC, Navin NE, et al. Single-cell analysis at the threshold[J]. Nat Biotechnol, 2016, 34(11):1111-1118.
doi: 10.1038/nbt.3721 pmid: 27824834 |
[13] |
Pollen AA, Nowakowski TJ, Shuga J, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex[J]. Nat Biotechnol, 2014, 32(10):1053-1058.
doi: 10.1038/nbt.2967 pmid: 25086649 |
[14] | Trombetta JJ, Gennert D, Lu D, et al. Preparation of single-cell RNA-seq libraries for next generation sequencing[J]. Curr Protoc Mol Biol, 2014,107: 4. 22. 1- 4. 2217. |
[15] |
Rozenblatt-Rosen O, Stubbington MJT, Regev A, et al. The Human Cell Atlas:from vision to reality[J]. Nature, 2017, 550(7677):451-453.
doi: 10.1038/550451a URL |
[16] | Poulin JF, Tasic B, Hjerling-Leffler J, et al. Disentangling neural cell diversity using single-cell transcriptomics[J]. Nat Neurosci, 2016, 19(9):1131-1141. |
[17] |
Han X, Zhou Z, Fei L, et al. Construction of a human cell landscape at single-cell level[J]. Nature, 2020, 581(7808):303-309.
doi: 10.1038/s41586-020-2157-4 URL |
[18] |
Gawad C, Koh W, Quake SR. Single-cell genome sequencing:current state of the science[J]. Nat Rev Genet, 2016, 17(3):175-188.
doi: 10.1038/nrg.2015.16 URL |
[19] | Guo JT, Nie XC, Giebler M, et al. The dynamic transcriptional cell atlas of testis development during human puberty[J]. Cell Stem Cell, 2020,26(2):262- 276.e4. |
[20] | Carter RA, Bihannic L, Rosencrance C, et al. A single-cell transcriptional atlas of the developing murine cerebellum[J]. Curr Biol, 2018,28(18):2910- 2920. e2. |
[21] |
Park JE, Botting RA, Conde CD, et al. A cell atlas of human thymic development defines T cell repertoire formation[J]. bioRxiv, 2020, DOI: 10.1101/2020.01.28.911115.
doi: 10.1101/2020.01.28.911115 |
[22] | Hernandez PP, Strzelecka PM, Athanasiadis EI, et al. Single-cell transcriptional analysis reveals ILC-like cells in zebrafish[J]. Sci Immunol, 2018, 3(29):u5265. |
[23] | Azizi E, Carr AJ, Plitas G, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment[J]. Cell, 2018,174(5):1293-1308. e36. |
[24] | Han X, Wang R, Zhou Y, et al. Mapping the mouse cell atlas by microwell-seq[J]. Cell, 2018,172(5):1091- 1107. e17. |
[25] |
Qiu X, Mao Q, Tang Y, et al. Reversed graph embedding resolves complex single-cell trajectories[J]. Nat Methods, 2017, 14(10):979-982.
doi: 10.1038/NMETH.4402 |
[26] | Sharon N, Chawla R, Mueller J, et al. A peninsular structure coordinates asynchronous differentiation with morphogenesis to generate pancreatic islets[J]. Cell, 2019, 176(4):790-804.e13. |
[27] |
Pijuan-Sala B, Griffiths JA, Guibentif C, et al. A single-cell molecular map of mouse gastrulation and early organogenesis[J]. Nature, 2019, 566(7745):490-495.
doi: 10.1038/s41586-019-0933-9 URL |
[28] |
Cao J, Spielmann M, Qiu X, et al. The single-cell transcriptional landscape of mammalian organogenesis[J]. Nature, 2019, 566(7745):496-502.
doi: 10.1038/s41586-019-0969-x URL |
[29] |
Armingol E, Officer A, Harismendy O, et al. Deciphering cell-cell interactions and communication from gene expression[J]. Nat Rev Genet, 2021, 22(2):71-88.
doi: 10.1038/s41576-020-00292-x pmid: 33168968 |
[30] |
Vento-Tormo R, Efremova M, Botting RA, et al. Single-cell reconstruction of the early maternal-fetal interface in humans[J]. Nature, 2018, 563(7731):347-353.
doi: 10.1038/s41586-018-0698-6 URL |
[31] |
Davidson S, Efremova M, Riedel A, et al. Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth[J]. Cell Rep, 2020, 31(7):107628.
doi: 10.1016/j.celrep.2020.107628 URL |
[32] | Kalucka J, de Rooij LPMH, Goveia J, et al. Single-cell transcriptome atlas of murine endothelial cells[J]. Cell, 2020,180(4):764-779. e20. |
[33] | Davie K, Janssens J, Koldere D, et al. A single-cell transcriptome atlas of the aging Drosophila brain[J]. Cell, 2018,174(4):982-998. e20. |
[34] | Ma S, Sun S, Geng L, et al. Caloric restriction reprograms the single-cell transcriptional landscape of Rattus norvegicus aging[J]. Cell, 2020,180(5):984- 1001. e22. |
[35] |
Ma S, Sun SH, Li JM, et al. Single-cell transcriptomic atlas of primate cardiopulmonary aging[J]. Cell Res, 2021, 31(4):415-432.
doi: 10.1038/s41422-020-00412-6 URL |
[36] | Wang S, Zheng Y, Li J, et al. Single-cell transcriptomic atlas of primate ovarian aging[J]. Cell, 2020,180(3):585-600. e19. |
[37] |
Tabula Muris Consortium. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse[J]. Nature, 2020, 583(7817):590-595.
doi: 10.1038/s41586-020-2496-1 URL |
[38] | Li Z, Zheng M, Mo J, et al. Single-cell RNA sequencing of preadipocytes reveals the cell fate heterogeneity induced by melatonin[J]. J Pineal Res, 2021, 70(3):e12725. |
[39] | Cosacak MI, Bhattarai P, Reinhardt S, et al. Single-cell transcriptomics analyses of neural stem cell heterogeneity and contextual plasticity in a zebrafish brain model of amyloid toxicity[J]. Cell Rep, 2019,27(4):1307-1318. e3. |
[40] |
Zarei K, Stroik MR, Gansemer ND, et al. Early pathogenesis of cystic fibrosis gallbladder disease in a porcine model[J]. Lab Invest, 2020, 100(11):1388-1399.
doi: 10.1038/s41374-020-0474-8 URL |
[41] |
Estermann MA, Williams S, Hirst CE, et al. Insights into gonadal sex differentiation provided by single-cell transcriptomics in the chicken embryo[J]. Cell Rep, 2020, 31(1):107491.
doi: 10.1016/j.celrep.2020.03.055 URL |
[42] |
Feregrino C, Sacher F, Parnas O, et al. A single-cell transcriptomic atlas of the developing chicken limb[J]. BMC Genomics, 2019, 20(1):401.
doi: 10.1186/s12864-019-5802-2 URL |
[43] |
Qiu K, Xu DD, Wang LQ, et al. Association analysis of single-cell RNA sequencing and proteomics reveals a vital role of Ca2+ signaling in the determination of skeletal muscle development potential[J]. Cells, 2020, 9(4):1045.
doi: 10.3390/cells9041045 URL |
[44] | 张恒. L1-siRNAs在猪早期胚胎中的功能研究及猪早期胚胎单细胞转录组分析[D]. 哈尔滨:东北农业大学, 2018. |
Zhang H. Functional study of L1-siRNAs and single cell transcriptome analysis in porcine preimplantation embryos[D]. Harbin:Northeast Agricultural University, 2018. | |
[45] |
Goodpaster BH, Sparks LM. Metabolic flexibility in health and disease[J]. Cell Metab, 2017, 25(5):1027-1036.
doi: S1550-4131(17)30220-6 pmid: 28467922 |
[46] | Yang H, Ma JY, Wan Z, et al. Characterization of sheep spermatogenesis through single-cell RNA sequencing[J]. FASEB J, 2021, 35(2):e21187. |
[47] | 葛伟. 单细胞分辨率解析绒山羊及小鼠毛囊发生的转录调控机制[D]. 杨凌:西北农林科技大学, 2019. |
Ge W. Dissecting the transcriptional regulatory mechanism underlying cashmere goat and murine hair follicle morphogenesis at single-cell resolution[D]. Yangling:Northwest A & F University, 2019. | |
[48] |
Li Y, Haug S, Schlosser P, et al. Integration of GWAS summary statistics and gene expression reveals target cell types underlying kidney function traits[J]. J Am Soc Nephrol, 2020, 31(10):2326-2340.
doi: 10.1681/ASN.2020010051 URL |
[49] |
Farmer A, Thibivilliers S, Ryu KH, et al. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level[J]. Mol Plant, 2021, 14(3):372-383.
doi: 10.1016/j.molp.2021.01.001 URL |
[50] | Ranzoni AM, Tangherloni A, Berest I, et al. Integrative single-cell RNA-seq and ATAC-seq analysis of human developmental hematopoiesis[J]. Cell Stem Cell, 2021, 28(3):472-487. e7. |
[1] | KOU Jia-yi, WANG Yu-ling, ZENG Rui-lin, LAN Dao-liang. Application of Single-cell Transcriptome Sequencing in Mammalian [J]. Biotechnology Bulletin, 2022, 38(11): 41-48. |
[2] | WANG Meng-ting, CAO Jie-yu, WANG Zhong-xin, WANG Ya-yu, YANG Da-zuo, ZHOU Yi-bing, ZHAO Huan. Research Progress of MicroRNA Involvement in the Stress Responses of Aquatic Animals to Envirnmental Pollutants [J]. Biotechnology Bulletin, 2021, 37(6): 272-278. |
[3] | PENG Wen-chao, LIU Jian-xin, WANG Di-ming. Research Progress on Metabolic Causes for Hypoxic Stress in Mammalian Animals [J]. Biotechnology Bulletin, 2021, 37(1): 262-271. |
[4] | ZHAO Xu-dong, HUANG Yong-zhi, BI Yan-zhen, DONG Fa-ming. Strategies for Efficient Exogenous Gene Expression in Transgenic Animals [J]. Biotechnology Bulletin, 2020, 36(3): 45-53. |
[5] | SONG Hua-li, SUN Xiao-ying, KONG Xiang-hui, LI Li, PEI Chao. Application of RNA Interference Technology in Antiviral and Antiparasitic Research of Aquatic Animals [J]. Biotechnology Bulletin, 2020, 36(2): 193-205. |
[6] | ZHOU Yang, WANG Tao-tao, YAN Dan-dan, WANG Ying-ying, SHI Qin-xuan, SUN Li-hui, LIN Feng. Advances in Biotechnological Application of Elastin-like Polypeptides as Functional Nanomaterials [J]. Biotechnology Bulletin, 2020, 36(11): 198-208. |
[7] | Chen Xiuli, Ma Libing. Research Progress in Genomic Imprinting in Mammals [J]. Biotechnology Bulletin, 2015, 31(1): 46-50. |
[8] | Liu Yuexing, Ma Hongyu, Ma Chunyan, Jiang Wei, Li Shujuan, Ma Lingbo,. Research Progress of Functional Genes Related with Important Economic Traits for Aquatic Animals [J]. Biotechnology Bulletin, 2014, 0(2): 30-40. |
[9] | Zhang Xiaomeng, Ma Pu, Wang Hongdi, Wang Xiuli. Progresses of SNPs Studies in Aquaculture Animals [J]. Biotechnology Bulletin, 2013, 0(8): 7-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||