Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (4): 278-287.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0860
Previous Articles Next Articles
HE Ya-lun(), ZENG Li-rong, LIU Xiong, ZHANG Ling, WANG Qiong
Received:
2021-07-02
Online:
2022-04-26
Published:
2022-05-06
HE Ya-lun, ZENG Li-rong, LIU Xiong, ZHANG Ling, WANG Qiong. Effects of High-dose Tannic Acid on the Intestinal Barrier Function and Gut Microbiota in Mice[J]. Biotechnology Bulletin, 2022, 38(4): 278-287.
Gene | Forward primer(5'-3') | Reverse primer(5'-3') |
---|---|---|
ZO 1 | GCTTTAGCGAACAGAAGGAGC | TTCATTTTTCCGAGACTTCACCA |
Occludin | CACACTTGCTTGGGACAGAG | TAGCCATAGCCTCCATAGCC |
GAPDH | TGGCCTTCCGTGTTCCTAC | GAGTTGCTGTTGAAGTCGCA |
Table 1 Primers’ sequences for RT-qPCR
Gene | Forward primer(5'-3') | Reverse primer(5'-3') |
---|---|---|
ZO 1 | GCTTTAGCGAACAGAAGGAGC | TTCATTTTTCCGAGACTTCACCA |
Occludin | CACACTTGCTTGGGACAGAG | TAGCCATAGCCTCCATAGCC |
GAPDH | TGGCCTTCCGTGTTCCTAC | GAGTTGCTGTTGAAGTCGCA |
Fig. 1 Effects of high-dose tannic acid on the body weights of the mice A:Changes in the body weights of the four groups of mice during the experiment. B:Weight gains of mice after the end of the experiment. C:The weekly dietary intake of each group during the experiment. D:The weight of adipose tissue in each group after the end of the experiment. The error lines in the figure all are the mean ± standard error,and *(0.01<P<0.05),**(0.001<P<0.01),and ***(P<0.001),the same below
Fig. 3 Effects of high-dose tannic acid on the intestinal structure A:Weights of intestinal tissues of the mice. B:Weights of intestinal tissue contents of the mice. C:H&E staining of colon tissue. D:Number of goblet cells. E:Crypt length. F:Tissue damage score
Fig. 4 Effect of high dose tannic acid on the intestinal barrier A:Changes in intestinal Muc2 mRNA content. B:Changes in the mRNA levels of genes related to intestinal barrier function
Fig. 5 Effects of high dose tannic acid on the intestinal microbial diversity of the obese mice A:Alpha diversity index analysis. B:Beta diversity analysis. C:Venn diagram. D:Heatmap at the phylum level
Fig. 6 Analysis of species composition and inter-group differences at the phylum level A:Community bar plot at the phylum level. B and C:Intergroup difference analysis - multi-group comparison
Fig. 7 Analysis of species composition and inter-group differences at the genus level A:Community bar plot at the genus level. B and C:Intergroup difference analysis - multi-group comparison
[1] |
Chung KT, Wong TY, Wei CI, et al. Tannins and human health:a review[J]. Crit Rev Food Sci Nutr, 1998, 38(6):421-464.
pmid: 9759559 |
[2] |
Sanyal R, Darroudi F, et al. Inhibition of the genotoxic effects of heterocyclic amines in human derived hepatoma cells by dietary bioantimutagens[J]. Mutagenesis, 1997, 12(4):297-303.
doi: 10.1093/mutage/12.4.297 pmid: 9237777 |
[3] |
Chen X, Beutler JA, McCloud TG, et al. Tannic acid is an inhibitor of CXCL12(SDF-1alpha)/CXCR4 with antiangiogenic activity[J]. Clin Cancer Res, 2003, 9(8):3115-3123.
pmid: 12912963 |
[4] | Ngobili TA, Shah H, Park JP, et al. Remodeling of tannic acid crosslinked collagen type I induces apoptosis in ER+ breast cancer cells[J]. Anticancer Res, 2015, 35(3):1285-1290. |
[5] |
Wang CC, Chen LG, Yang LL. Cuphiin D1, the macrocyclic hydrolyzable tannin induced apoptosis in HL-60 cell line[J]. Cancer Lett, 2000, 149(1/2):77-83.
doi: 10.1016/S0304-3835(99)00344-4 URL |
[6] |
Yang LL, Lee CY, Yen KY. Induction of apoptosis by hydrolyzable tannins from Eugenia jambos L. on human leukemia cells[J]. Cancer Lett, 2000, 157(1):65-75.
pmid: 10893444 |
[7] |
Uchiumi F, Sato T, Tanuma SI. Identification and characterization of a tannic acid-responsive negative regulatory element in the mouse mammary tumor virus promoter[J]. J Biol Chem, 1998, 273(20):12499-12508.
doi: 10.1074/jbc.273.20.12499 pmid: 9575208 |
[8] |
Sun YY, Zhang TH, Wang BD, et al. Tannic acid, an inhibitor of poly(ADP-ribose)glycohydrolase, sensitizes ovarian carcinoma cells to cisplatin[J]. Anti Cancer Drugs, 2012, 23(9):979-990.
doi: 10.1097/CAD.0b013e328356359f URL |
[9] |
Athar M, Khan WA, Mukhtar H. Effect of dietary tannic acid on epidermal, lung, and forestomach polycyclic aromatic hydrocarbon metabolism and tumorigenicity in Sencar mice[J]. Cancer Res, 1989, 49(21):5784-5788.
pmid: 2507136 |
[10] |
Chen SC, Chung KT. Mutagenicity and antimutagenicity studies of tannic acid and its related compounds[J]. Food Chem Toxicol, 2000, 38(1):1-5.
pmid: 10685008 |
[11] |
Ahmad ST, Sultana S. Tannic acid mitigates cisplatin-induced nephrotoxicity in mice[J]. Hum Exp Toxicol, 2012, 31(2):145-156.
doi: 10.1177/0960327111414282 pmid: 21724663 |
[12] | Boyd EM, Bereczky K, Godi I. The acute toxicity of tannic acid administered intragastrically[J]. Can Med Assoc J, 1965, 92:1292-1297. |
[13] |
Al-Mamary M, Molham AH, Abdulwali AA, et al. In vivo effects of dietary Sorghum tannins on rabbit digestive enzymes and mineral absorption[J]. Nutr Res, 2001, 21(10):1393-1401.
doi: 10.1016/S0271-5317(01)00334-7 URL |
[14] |
Hervás G, Pérez V, et al. Intoxication of sheep with quebracho tannin extract[J]. J Comp Pathol, 2003, 129(1):44-54.
pmid: 12859907 |
[15] |
Smith AH, Mackie RI. Effect of condensed tannins on bacterial diversity and metabolic activity in the rat gastrointestinal tract[J]. Appl Environ Microbiol, 2004, 70(2):1104-1115.
doi: 10.1128/AEM.70.2.1104-1115.2004 URL |
[16] |
Larraín RE, Richards MP, Schaefer DM, et al. Growth performance and muscle oxidation in rats fed increasing amounts of high-tannin Sorghum[J]. J Anim Sci, 2007, 85(12):3276-3284.
pmid: 17709777 |
[17] |
Molan AL, Waghorn GC, et al. The effect of condensed tannins from seven herbages on Trichostrongylus colubriformis larval migration in vitro[J]. Folia Parasitol, 2000, 47(1):39-44.
doi: 10.14411/fp.2000.007 URL |
[18] |
Funatogawa K, Hayashi S, et al. Antibacterial activity of hydrolyzable tannins derived from medicinal plants against Helicobacter pylori[J]. Microbiol Immunol, 2004, 48(4):251-261.
pmid: 15107535 |
[19] | 孙展英, 李建涛, 陈宝江. 单宁酸对仔猪生长性能、营养物质利用率及相关消化酶活性的影响[J]. 饲料研究, 2014(1):46-49. |
Sun ZY, Li JT, Chen BJ. Effects of tannic acid on growth performance, nutrient utilization and related digestive enzyme activities of piglets[J]. Feed Res, 2014(1):46-49. | |
[20] |
Schiavone A, Guo K, et al. Effects of a natural extract of chestnut wood on digestibility, performance traits, and nitrogen balance of broiler chicks[J]. Poult Sci, 2008, 87(3):521-527.
doi: 10.3382/ps.2007-00113 URL |
[21] | 刘起胜, 徐筱红, 刘怀, 等. 七味白术散对菌群失调腹泻小鼠肠绒毛和隐窝的影响[J]. 中国中医药现代远程教育, 2014, 12(23):154-155. |
Liu QS, Xu XH, Liu H, et al. Effects on intestinal villi and crypts in flora diarrhea mice by qiweibaizhu powder[J]. Chin Med Mod Distance Educ China, 2014, 12(23):154-155. | |
[22] | 黄永洁. 低聚木糖对断奶仔猪肠道pH和肠黏膜形态结构的影响[J]. 现代畜牧兽医, 2014(5):23-27. |
Huang YJ. Effects of xylo-oligosaccharides on intestinal pH and intestinal mucosal morphological structure of weaned piglets[J]. Mod J Animal Husb Vet Med, 2014(5):23-27. | |
[23] | 魏小兵, 张秀林, 等. 无抗发酵饲粮对猪小肠黏膜形态和杯状细胞的影响[J]. 动物营养学报, 2019, 31(4):1797-1805. |
Wei XB, Zhang XL, et al. Effects of fermentation diet without antibiotic on intestinal mucosal morphology and goblet cells of piglets[J]. Chin J Animal Nutr, 2019, 31(4):1797-1805. | |
[24] |
Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions[J]. PNAS, 2011, 108(Suppl 1):4659-4665.
doi: 10.1073/pnas.1006451107 URL |
[25] |
Koliada A, Syzenko G, Moseiko V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population[J]. BMC Microbiol, 2017, 17(1):120.
doi: 10.1186/s12866-017-1027-1 URL |
[26] | Liu X, Mao B, et al. Blautia-a new functional genus with potential probiotic properties?[J]. Gut Microbes, 2021, 13(1):1-21. |
[27] | Benítez-Páez A, Gómez del Pugar EM, López-Almela I, et al. Depletion of Blautia species in the microbiota of obese children relates to intestinal inflammation and metabolic phenotype worsening[J]. mSystems, 2020, 5(2):e00857-19. |
[28] |
Thingholm LB, Rühlemann MC, Koch M, et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition[J]. Cell Host Microbe, 2019, 26(2):252-264.
doi: S1931-3128(19)30348-8 pmid: 31399369 |
[1] | SHA Shan-shan, DONG Shi-rong, YANG Yu-ju. Research Progress in Gut Microbiota and Metabolites Regulating Host Intestinal Immunity [J]. Biotechnology Bulletin, 2023, 39(8): 126-136. |
[2] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[3] | LI Hai-chao, XIE Fei, ZHANG Yuan-qi, GUAN Ruo-bing. Effects of Resistant and Sensitive Rice Varieties on Gut Microbiota of Nilaparvata lugens [J]. Biotechnology Bulletin, 2021, 37(3): 1-9. |
[4] | HUANG Xiao-dan, CHEN Meng-yu, HUANG Wen-jie, ZHANG Ming-wei, YAN Shi-juan. Progress Based on Metabolomics:Plant Polyphenols and Their Gut Health Benefit [J]. Biotechnology Bulletin, 2021, 37(1): 123-136. |
[5] | LIU Yu, DING Qian-wen, RAN Chao, YANG Ya-lin, WANG An-ran, ZHANG Hong-ling, ZHANG Jin-xiong, LI Jie, Rolf Erik OLSEN, Einar RINGØ, ZHANG Zhen, ZHOU Zhi-gang. Research Advances on Short-chain Fatty Acids of Metabolites of Gut Microbiota in Aquatic Animals [J]. Biotechnology Bulletin, 2020, 36(2): 58-64. |
[6] | WU Qin, XU Zi-yang, LIU Li-ping, ZHANG Wen-ying, SONG Si-yuan. Role of Gut Microbiota in Stress-induced Hypertension in Rats [J]. Biotechnology Bulletin, 2020, 36(2): 83-90. |
[7] | DU Ruo-xi, GUO Ming-zhang, XIE Zi-xin, HE Xiao-yun, HUANG Kun-lun, XU Wen-tao. Application and Prospect of Synthetic Biology in Improving Intestinal Health [J]. Biotechnology Bulletin, 2018, 34(1): 49-59. |
[8] | LIU Dong-lian, LIAO Meng-ling, ZHOU Huan. Research Progress on the Correlation Analysis Between Diabetes and Gut Microbiota Using High Throughput Sequencing [J]. Biotechnology Bulletin, 2016, 32(9): 59-64. |
[9] | Zhao Jie, Ma Chen, Xi Xiaomin, Zhang Heping. Advances of Real-time PCR Technology in the Field of Gut Microbiota [J]. Biotechnology Bulletin, 2014, 0(12): 61-66. |
[10] | Zhao Na,Liu Shelan,Lu Jiqi,He Hongxuan,Zhao Baohua. Characterization of Intestinal Microbiota in Feces from Captive Healthy Rhesus Macaques [J]. Biotechnology Bulletin, 2013, 0(7): 153-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||