Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (9): 136-146.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0112
Previous Articles Next Articles
LI Ji-hong1,2(), JING Yu-ling2, MA Gui-zhen1(), GUO Rong-jun2(), LI Shi-dong2
Received:
2022-01-25
Online:
2022-09-26
Published:
2022-10-11
Contact:
MA Gui-zhen,GUO Rong-jun
E-mail:804797175@qq.com;guizhenma@sohu.com;guorj20150620@126.com
LI Ji-hong, JING Yu-ling, MA Gui-zhen, GUO Rong-jun, LI Shi-dong. Genome Construction of Achromobacter 77 and Its Characteristics on Chemotaxis and Antibiotic Resistance[J]. Biotechnology Bulletin, 2022, 38(9): 136-146.
Fig. 1 Demonstration of chemotactic response of strain 77 to fungal and root exudates The plate was divided into two parts for two parallel tests of the same treatment. A and B shows the inoculation site of the candidate chemotactic compounds and sterilized water,respectively,and C shows the inoculation site of the bacterial suspension of strain 77
名称Name | 数据Data |
---|---|
基因组大小Genome size | 5 868 070 bp |
Scaffold条数Number of Scaffolds | 1 |
染色体数Number of chromosomes | 1 |
质粒数Number of plasmids | 0 |
GC含量GC content | 65.89% |
CRISPR-Cas系统数量Number of CRISPR-Cas system | 7 |
tRNA数目Number of tRNA | 55 |
rRNA数量Number of rRNA | 13 |
基因组岛数量Number of genome island | 12 |
基因数目Number of CDS | 5 475 |
Table 1 Genome assembly of strain 77
名称Name | 数据Data |
---|---|
基因组大小Genome size | 5 868 070 bp |
Scaffold条数Number of Scaffolds | 1 |
染色体数Number of chromosomes | 1 |
质粒数Number of plasmids | 0 |
GC含量GC content | 65.89% |
CRISPR-Cas系统数量Number of CRISPR-Cas system | 7 |
tRNA数目Number of tRNA | 55 |
rRNA数量Number of rRNA | 13 |
基因组岛数量Number of genome island | 12 |
基因数目Number of CDS | 5 475 |
Fig. 2 Circle map of the genome of strain 77 The outside circle of the map shows the genome size. The second and third circles are CDS on the positive and negative chains. Different colors indicate the functional classification of different COG of CDS. The fourth circle is rRNA and tRNA. The fifth circle is GC content. The outward red part indicates that GC content in this region is higher than the average GC content in the whole genome. The higher the peak value,the greater the difference between GC content in this region and the average GC content. The interior blue part indicates that GC content in this region is lower than the average GC content in the whole genome. The higher the peak value,the greater the difference between GC content in this region and the average GC content. The interior circle is GC-SKEW
Fig. 3 KEGG annotated pathways of strain 77's genome The vertical coordinate represent the level2 classification of KEGG pathway,and the horizontal coordinate represents the number of genes under this classification. Different colors represent the level1 classification of KEGG pathway. The right column represents the number of genes under different level1 classifications. Since the same gene may be annotated into more than one level2 categories,de-redundancy is performed when counting the number of genes in level1 categories
GO注释GO annotation | 基因数Number of genes |
---|---|
代谢过程Metabolic process | 158 |
三羧酸循环Tricarboxylic acid cycle | 18 |
苹果酸代谢Malate metabolic process | 4 |
细胞氨基酸分解代谢 Cellular amino acid catabolic process | 5 |
胁迫应答Stress response | 22 |
抗生素分解Antibiotic decomposition | 2 |
药物跨膜运输Transmembrane transport of drugs | 2 |
细胞氧化解毒Cellular oxidant detoxification | 33 |
趋化性Chemotaxis | 33 |
细菌型鞭毛依赖运动 Bacterial-type flagellum-dependent cell motility | 18 |
Table 2 Statistics of catabolism and chemotaxis related genes in GO annotation of strain 77's genome
GO注释GO annotation | 基因数Number of genes |
---|---|
代谢过程Metabolic process | 158 |
三羧酸循环Tricarboxylic acid cycle | 18 |
苹果酸代谢Malate metabolic process | 4 |
细胞氨基酸分解代谢 Cellular amino acid catabolic process | 5 |
胁迫应答Stress response | 22 |
抗生素分解Antibiotic decomposition | 2 |
药物跨膜运输Transmembrane transport of drugs | 2 |
细胞氧化解毒Cellular oxidant detoxification | 33 |
趋化性Chemotaxis | 33 |
细菌型鞭毛依赖运动 Bacterial-type flagellum-dependent cell motility | 18 |
基因类别 Gene classification | 基因名称 Gene name | 基因数量 Number of genes | 基因编号 Gene ID | KEGG数据库基因注释 Gene annotation in KEGG database |
---|---|---|---|---|
mcp | mcp | 9 | gene0255、gene0975、gene1020、gene2196、gene3307、gene3446、gene4030、gene4485、gene4827 | 甲基趋化受体蛋白Mcp |
che | cheA | 1 | gene2189 | 感受器激酶CheA |
cheW | 1 | gene2190 | 嘌呤结合趋化蛋白CheW | |
cheR | 2 | gene2192、gene4468 | 甲基转移酶CheR | |
cheB | 2 | gene2193、gene3711 | 趋化响应调节蛋白CheB | |
cheBR | 1 | gene4467 | CheB/CheR融合蛋白 | |
cheD | 1 | gene5023 | 趋化蛋白CheD | |
wsp | wspF | 1 | gene3040 | 趋化响应调节蛋白WspF |
wspD、wspB | 2 | gene3042、gene3044 | 趋化相关蛋白WspD、WspB | |
wspC | 1 | gene3043 | 甲基转移酶WspC | |
wspA | 1 | gene3045 | 甲基趋化受体蛋白WspA | |
mot | motA | 1 | gene2381 | 鞭毛马达蛋白MotA |
aer | aer | 2 | gene2219、gene2311 | 趋氧性受体蛋白Aer |
tar | tar | 1 | gene4676 | 甲基趋化受体蛋白Ⅱ(天冬氨酸感受器受体) |
- | - | 5 | gene0304、gene2191、gene2214、gene2215、gene2217 | 未知功能趋化蛋白 |
- | - | 1 | gene3125 | 未知功能趋化蛋白 |
- | - | 1 | gene3000 | 未知功能趋化蛋白 |
Table 3 Predictive classification of chemotactic genes of strain 77
基因类别 Gene classification | 基因名称 Gene name | 基因数量 Number of genes | 基因编号 Gene ID | KEGG数据库基因注释 Gene annotation in KEGG database |
---|---|---|---|---|
mcp | mcp | 9 | gene0255、gene0975、gene1020、gene2196、gene3307、gene3446、gene4030、gene4485、gene4827 | 甲基趋化受体蛋白Mcp |
che | cheA | 1 | gene2189 | 感受器激酶CheA |
cheW | 1 | gene2190 | 嘌呤结合趋化蛋白CheW | |
cheR | 2 | gene2192、gene4468 | 甲基转移酶CheR | |
cheB | 2 | gene2193、gene3711 | 趋化响应调节蛋白CheB | |
cheBR | 1 | gene4467 | CheB/CheR融合蛋白 | |
cheD | 1 | gene5023 | 趋化蛋白CheD | |
wsp | wspF | 1 | gene3040 | 趋化响应调节蛋白WspF |
wspD、wspB | 2 | gene3042、gene3044 | 趋化相关蛋白WspD、WspB | |
wspC | 1 | gene3043 | 甲基转移酶WspC | |
wspA | 1 | gene3045 | 甲基趋化受体蛋白WspA | |
mot | motA | 1 | gene2381 | 鞭毛马达蛋白MotA |
aer | aer | 2 | gene2219、gene2311 | 趋氧性受体蛋白Aer |
tar | tar | 1 | gene4676 | 甲基趋化受体蛋白Ⅱ(天冬氨酸感受器受体) |
- | - | 5 | gene0304、gene2191、gene2214、gene2215、gene2217 | 未知功能趋化蛋白 |
- | - | 1 | gene3125 | 未知功能趋化蛋白 |
- | - | 1 | gene3000 | 未知功能趋化蛋白 |
分泌系统Secretion system | 数量Amount |
---|---|
Ⅰ型 Type Ⅰ | 1 |
Ⅱ型 Type Ⅱ | 11 |
Ⅲ型 Type Ⅲ | 0 |
Ⅳ型 Type Ⅳ | 2 |
Ⅴ型 Type Ⅴ | 0 |
Ⅵ型 Type Ⅵ | 17 |
Table 4 Classification in secretion system of strain 77
分泌系统Secretion system | 数量Amount |
---|---|
Ⅰ型 Type Ⅰ | 1 |
Ⅱ型 Type Ⅱ | 11 |
Ⅲ型 Type Ⅲ | 0 |
Ⅳ型 Type Ⅳ | 2 |
Ⅴ型 Type Ⅴ | 0 |
Ⅵ型 Type Ⅵ | 17 |
Fig.8 Chemotactic responses of stain 77 to fungal and root exudates The red dots indicate the inoculation site of the candidate chemotactic compounds or sterile water,and the red arrows point to the arc-shaped chemotactic circle formed by the chemotactic response of strain 77
化合物浓度 Concentration/ (mmol.L-1) | 真菌或根分泌物 Fungal or root exudates | 根分泌物 Root exudate | 尖孢镰刀菌分泌物 Exudate of Fusarium oxysporum | ||||||
---|---|---|---|---|---|---|---|---|---|
延胡索酸 Fumaric acid | α-酮戊二酸 α -ketoglutaric acid | 苹果酸 Malic acid | 琥珀酸 Succinic acid | 水杨酸 Salicylic acid | 对羟基苯乙酸4-Hyd-roxyphenylacetic acid | 镰刀菌酸 Fusaric acid | |||
0 | 0.278±0.002 d | 0.334±0.002 bc | 0.274±0.004 b | 0.285±0.012 c | 0.295±0.003 d | 0.642±0.008 b | 0.293±0.004 c | ||
0.5 | 0.323±0.003 b | 0.344±0.002 ab | 0.319±0.005 a | 0.315±0.004 a | 0.334±0.002 b | 0.775±0.003 a | 0.340±0.002 a | ||
1 | 0.351±0.001 a | 0.351±0.002 a | 0.312±0.002 a | 0.313±0.006 ab | 0.366±0.002 a | 0.760±0.019 a | 0.322±0.005 b | ||
2 | 0.304±0.009 c | 0.331±0.001 bc | 0.285±0.004 b | 0.298±0.011 bc | 0.317±0.006 bc | 0.049±0.002 c | 0.272±0.018 d | ||
4 | 0.299±0.012 c | 0.326±0.004 c | 0.272±0.006 bc | 0.291±0.002 c | 0.307±0.003 cd | 0.049±0.003 c | 0.111±0.007 e | ||
6 | 0.288±0.002 d | 0.308±0.002 d | 0.088±0.011 d | 0.243±0.012 d | 0.223±0.026 e | 0.053±0.002 c | 0.055±0.004 f | ||
8 | 0.063±0.002 e | 0.095±0.018 e | 0.052±0.002 e | 0.094±0.005 e | 0.054±0.003 f | 0.052±0.003 c | 0.054±0.005 f | ||
10 | 0.054±0.004 e | 0.056±0.007 f | 0.054±0.003 e | 0.058±0.002 f | 0.051±0.001 f | 0.053±0.001 c | 0.053±0.003 f |
Table 5 Effects of fungal and root exudate components on OD600 value of strain 77
化合物浓度 Concentration/ (mmol.L-1) | 真菌或根分泌物 Fungal or root exudates | 根分泌物 Root exudate | 尖孢镰刀菌分泌物 Exudate of Fusarium oxysporum | ||||||
---|---|---|---|---|---|---|---|---|---|
延胡索酸 Fumaric acid | α-酮戊二酸 α -ketoglutaric acid | 苹果酸 Malic acid | 琥珀酸 Succinic acid | 水杨酸 Salicylic acid | 对羟基苯乙酸4-Hyd-roxyphenylacetic acid | 镰刀菌酸 Fusaric acid | |||
0 | 0.278±0.002 d | 0.334±0.002 bc | 0.274±0.004 b | 0.285±0.012 c | 0.295±0.003 d | 0.642±0.008 b | 0.293±0.004 c | ||
0.5 | 0.323±0.003 b | 0.344±0.002 ab | 0.319±0.005 a | 0.315±0.004 a | 0.334±0.002 b | 0.775±0.003 a | 0.340±0.002 a | ||
1 | 0.351±0.001 a | 0.351±0.002 a | 0.312±0.002 a | 0.313±0.006 ab | 0.366±0.002 a | 0.760±0.019 a | 0.322±0.005 b | ||
2 | 0.304±0.009 c | 0.331±0.001 bc | 0.285±0.004 b | 0.298±0.011 bc | 0.317±0.006 bc | 0.049±0.002 c | 0.272±0.018 d | ||
4 | 0.299±0.012 c | 0.326±0.004 c | 0.272±0.006 bc | 0.291±0.002 c | 0.307±0.003 cd | 0.049±0.003 c | 0.111±0.007 e | ||
6 | 0.288±0.002 d | 0.308±0.002 d | 0.088±0.011 d | 0.243±0.012 d | 0.223±0.026 e | 0.053±0.002 c | 0.055±0.004 f | ||
8 | 0.063±0.002 e | 0.095±0.018 e | 0.052±0.002 e | 0.094±0.005 e | 0.054±0.003 f | 0.052±0.003 c | 0.054±0.005 f | ||
10 | 0.054±0.004 e | 0.056±0.007 f | 0.054±0.003 e | 0.058±0.002 f | 0.051±0.001 f | 0.053±0.001 c | 0.053±0.003 f |
[1] | Staněk M. Microorganisms in the hyphosphere of fungi. I. introduction[J]. Česká Mykologie, 1984, 38(1):1-10. |
[2] | Deveau A, Labbé J. Mycorrhiza helper bacteria[M]// Molecular Mycorrhizal Symbiosis. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016:437-450. |
[3] |
Boer WD, Folman LB, Summerbell RC, et al. Living in a fungal world:impact of fungi on soil bacterial niche development[J]. FEMS Microbiol Rev, 2005, 29(4):795-811.
doi: 10.1016/j.femsre.2004.11.005 URL |
[4] |
Sun RL, Jing YL, de Boer W, et al. Dominant hyphae-associated bacteria of Fusarium oxysporum f. sp. cucumerinum in different cropping systems and insight into their functions[J]. Appl Soil Ecol, 2021, 165:103977.
doi: 10.1016/j.apsoil.2021.103977 URL |
[5] |
Bharadwaj DP, Alström S, Lundquist PO. Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions[J]. Mycorrhiza, 2012, 22(6):437-447.
doi: 10.1007/s00572-011-0418-7 pmid: 22081167 |
[6] |
Toljander JF, Lindahl BD, Paul LR, et al. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure[J]. FEMS Microbiol Ecol, 2007, 61(2):295-304.
pmid: 17535297 |
[7] |
de Weert S, Vermeiren H, Mulders IHM, et al. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens[J]. Mol Plant Microbe Interact, 2002, 15(11):1173-1180.
doi: 10.1094/MPMI.2002.15.11.1173 URL |
[8] |
Haq IU, Zwahlen RD, Yang P, et al. The response of Paraburkholderia terrae strains to two soil fungi and the potential role of oxalate[J]. Front Microbiol, 2018, 9:989.
doi: 10.3389/fmicb.2018.00989 URL |
[9] | 孙宁康, 江飞焰, 张林, 等. 丛枝菌根真菌Rhizophagus irregularis菌丝分泌物可诱导解磷细菌Rahnella aquatilis向菌丝移动[J]. 科学通报, 2021, 66(32):4157-4168. |
Sun NK, Jiang FY, Zhang L, et al. Hyphal exudates of an arbuscular mycorrhizal fungus Rhizophagus irregularis induce phosphate-solubilizing bacterium Rahnella aquatilis to swim towards its hyphae[J]. Chin Sci Bull, 2021, 66(32):4157-4168.
doi: 10.1360/TB-2021-0579 URL |
|
[10] |
Nazir R, et al. Inhibition of mushroom formation and induction of glycerol release-ecological strategies of Burkholderia terrae BS001 to create a hospitable niche at the fungus Lyophyllum sp. strain Karsten[J]. Microb Ecol, 2013, 65(1):245-254.
doi: 10.1007/s00248-012-0100-4 URL |
[11] |
Delcher AL, Bratke KA, Powers EC, et al. Identifying bacterial genes and endosymbiont DNA with Glimmer[J]. Bioinformatics, 2007, 23(6):673-679.
pmid: 17237039 |
[12] | Besemer J, Borodovsky M. GeneMark:web software for gene finding in prokaryotes, eukaryotes and viruses[J]. Nucleic Acids Res, 2005, 33(Web Server issue):W451-W454. |
[13] | Chan PP, Lowe TM. tRNAscan-SE:searching for tRNA genes in genomic sequences[J]. Methods Mol Biol, 2019, 1962:1-14. |
[14] |
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND[J]. Nat Methods, 2015, 12(1):59-60.
doi: 10.1038/nmeth.3176 pmid: 25402007 |
[15] |
Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000[J]. Nucleic Acids Res, 2000, 28(1):45-48.
pmid: 10592178 |
[16] | Jensen LJ, Julien P, Kuhn M, et al. eggNOG:automated construction and annotation of orthologous groups of genes[J]. Nucleic Acids Res, 2007, 36(suppl_1):D250-D254. |
[17] |
Kanehisa M, Goto S. KEGG:Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res, 2000, 28(1):27-30.
doi: 10.1093/nar/28.1.27 pmid: 10592173 |
[18] |
Konishi H, Hio M, Kobayashi M, et al. Bacterial chemotaxis towards polysaccharide pectin by pectin-binding protein[J]. Sci Rep, 2020, 10(1):3977.
doi: 10.1038/s41598-020-60274-1 pmid: 32132546 |
[19] |
Sampedro I, Parales RE, Krell T, et al. Pseudomonas chemotaxis[J]. FEMS Microbiol Rev, 2015, 39(1):17-46.
doi: 10.1111/j.1574-6968.1986.tb01837.x URL |
[20] |
Feng HC, Zhang N, et al. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9[J]. Mol Plant Microbe Interact, 2018, 31(10):995-1005.
doi: 10.1094/MPMI-01-18-0003-R URL |
[21] |
Warmink JA, Nazir R, van Elsas JD. Universal and species-specific bacterial ‘fungiphiles' in the mycospheres of different basidiomycetous fungi[J]. Environ Microbiol, 2009, 11(2):300-312.
doi: 10.1111/j.1462-2920.2008.01767.x pmid: 19196267 |
[22] |
Hou S, Larsen RW, Boudko D, et al. Myoglobin-like aerotaxis transducers in Archaea and bacteria[J]. Nature, 2000, 403(6769):540-544.
doi: 10.1038/35000570 URL |
[23] |
Sun YP, Unestam T, et al. Exudation-reabsorption in a mycorrhizal fungus, the dynamic interface for interaction with soil and soil microorganisms[J]. Mycorrhiza, 1999, 9(3):137-144.
doi: 10.1007/s005720050298 URL |
[24] |
de Weert S, Kuiper I, et al. Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365[J]. Mol Plant Microbe Interact, 2004, 17(11):1185-1191.
doi: 10.1094/MPMI.2004.17.11.1185 URL |
[25] |
Liu YP, Chen L, Wu GW, et al. Identification of root-secreted com-pounds involved in the communication between cucumber, the bene-ficial Bacillus amyloliquefaciens, and the soil-borne pathogen Fu-sarium oxysporum[J]. Mol Plant Microbe Interact, 2017, 30(1):53-62.
doi: 10.1094/MPMI-07-16-0131-R URL |
[26] |
Emmett BD, Lévesque-Tremblay V, Harrison MJ. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi[J]. ISME J, 2021, 15(8):2276-2288.
doi: 10.1038/s41396-021-00920-2 pmid: 33649552 |
[27] | Vila T, Nazir R, Rozental S, et al. The role of hydrophobicity and surface receptors at hyphae of Lyophyllum sp. strain Karsten in the interaction with Burkholderia terrae BS001 - implications for interactions in soil[J]. Front Microbiol, 2016, 7:1689. |
[28] |
Haq IU, Calixto RO, Yang P, et al. Chemotaxis and adherence to fungal surfaces are key components of the behavioral response of Burkholderia terrae BS001 to two selected soil fungi[J]. FEMS Microbiol Ecol, 2016, 92(11):fiw164.
doi: 10.1093/femsec/fiw164 URL |
[29] | 廖晓敬, 杨璐溪, 等. 几株新鞘氨醇杆菌的趋化性及其相关基因组成特点[J]. 微生物学报, 2017, 57(3):399-410. |
Liao XJ, Yang LX, et al. Chemotaxis and characteristics of chemotactic genes in Novosphingobium strains[J]. Acta Microbiol Sin, 2017, 57(3):399-410. | |
[30] |
Singh T, Arora DK. Motility and chemotactic response of Pseudomonas fluorescens toward chemoattractants present in the exudate of Macrophomina phaseolina[J]. Microbiol Res, 2001, 156(4):343-351.
pmid: 11770852 |
[31] |
Palmieri D, Vitale S, Lima G, et al. A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization[J]. Nat Commun, 2020, 11(1):5264.
doi: 10.1038/s41467-020-18994-5 pmid: 33067433 |
[32] |
Yuan J, Zhang N, Huang QW, et al. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6[J]. Sci Rep, 2015, 5:13438.
doi: 10.1038/srep13438 pmid: 26299781 |
[33] | 郭艾云, 鲍艳宇, 周启星. 土壤农药污染与细菌农药-抗生素交叉抗性研究进展[J]. 微生物学通报, 2020, 47(9):2984-2995. |
Guo AY, Bao YY, Zhou QX. Advances in soil pesticide contamination and bacterial pesticide-antibiotic cross-resistance[J]. Microbiol China, 2020, 47(9):2984-2995. |
[1] | WANG Teng-hui, GE Wen-dong, LUO Ya-fang, FAN Zhen-yu, WANG Yu-shu. Gene Mapping of Kale White Leaves Based on Whole Genome Re-sequencing of Extreme Mixed Pool(BSA) [J]. Biotechnology Bulletin, 2023, 39(9): 176-182. |
[2] | FANG Lan, LI Yan-yan, JIANG Jian-wei, CHENG Sheng, SUN Zheng-xiang, ZHOU Yi. Isolation, Identification and Growth-promoting Characteristics of Endohyphal Bacterium 7-2H from Endophytic Fungi of Spiranthes sinensis [J]. Biotechnology Bulletin, 2023, 39(8): 272-282. |
[3] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
[4] | ZHOU Zhen-chao, ZHENG Ji, SHUAI Xin-yi, LIN Ze-jun, CHEN Hong. High-throughput Profiling and Analysis of Shared Antibiotic Resistance Genes in Human Feces, Skin and Water Environments [J]. Biotechnology Bulletin, 2023, 39(7): 288-297. |
[5] | ZHANG Zhi-xia, LI Tian-pei, ZENG Hong, ZHU Xi-xian, YANG Tian-xiong, MA Si-nan, HUANG Lei. Genome Sequencing and Bioinformatics Analysis of Gelidibacter sp. PG-2 [J]. Biotechnology Bulletin, 2023, 39(3): 290-300. |
[6] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[7] | ZHANG Ao-jie, LI Qing-yun, SONG Wen-hong, YAN Shao-hui, TANG Ai-xing, LIU You-yan. Whole Genome Sequencing Analysis of a Phenol-degrading Strain Alcaligenes faecalis JF101 [J]. Biotechnology Bulletin, 2023, 39(10): 292-303. |
[8] | WANG Shuai, LV Hong-rui, ZHANG Hao, WU Zhan-wen, XIAO Cui-hong, SUN Dong-mei. Whole-Genome Sequencing Identification of Phosphate-solubilizing Bacteria PSB-R and Analysis of Its Phosphate-solubilizing Properties [J]. Biotechnology Bulletin, 2023, 39(1): 274-283. |
[9] | HU Xue-ying, ZHANG Yue, GUO Ya-jie, QIU Tian-lei, GAO Min, SUN Xing-bin, WANG Xu-ming. Comparison in Antibiotic Resistance Genes Carried by Bacteriophages and Bacteria in Farmland Soil Amended with Different Fertilizers [J]. Biotechnology Bulletin, 2022, 38(9): 116-126. |
[10] | WEN Chang, LIU Chen, LU Shi-yun, XU Zhong-bing, AI Chao-fan, LIAO Han-peng, ZHOU Shun-gui. Biological Characteristics and Genome Analysis of a Novel Multidrug-resistant Shigella flexneri Phage [J]. Biotechnology Bulletin, 2022, 38(9): 127-135. |
[11] | ZHANG Ze-ying, FAN Qing-feng, DENG Yun-feng, WEI Ting-zhou, ZHOU Zheng-fu, ZHOU Jian, WANG Jin, JIANG Shi-jie. Whole Genome Sequencing and Comparative Genomic Analysis of a High-yield Lipase-producing Strain WCO-9 [J]. Biotechnology Bulletin, 2022, 38(10): 216-225. |
[12] | CHEN Ti-qiang, XU Xiao-lan, SHI Lin-chun, ZHONG Li-Yi. Sequencing and Analysis of the Whole Genome of Zizhi Cultivar ‘Wuzhi No.2’(Ganoderma sp. strain Zizhi S2) [J]. Biotechnology Bulletin, 2021, 37(11): 42-56. |
[13] | MA Tao, LU Wei, LI Song-li, FAN Xia. Research Advance in the Resistome in the Microbiome of Livestock Animals [J]. Biotechnology Bulletin, 2021, 37(1): 113-122. |
[14] | GONG Zheng, ZHANG Jun-jie, ZHONG Deng-ke. Biological Characteristics and Antibiotic Resistance of Erysipelothrix rhusiopathiae Isolated from East China [J]. Biotechnology Bulletin, 2020, 36(6): 174-182. |
[15] | GUO He-bao, WANG Xing, HE Shan-wen, ZHANG Xiao-xia. Phenotypic Characteristics Combined with Genomic Analysis to Identify Different Colony Morphology Bacillus velezensis ACCC 19742 [J]. Biotechnology Bulletin, 2020, 36(2): 142-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||