Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (9): 127-135.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1549
Previous Articles Next Articles
WEN Chang(), LIU Chen, LU Shi-yun, XU Zhong-bing, AI Chao-fan, LIAO Han-peng(), ZHOU Shun-gui
Received:
2021-12-14
Online:
2022-09-26
Published:
2022-10-11
Contact:
LIAO Han-peng
E-mail:2742707020@qq.com;lhp91@126.com
WEN Chang, LIU Chen, LU Shi-yun, XU Zhong-bing, AI Chao-fan, LIAO Han-peng, ZHOU Shun-gui. Biological Characteristics and Genome Analysis of a Novel Multidrug-resistant Shigella flexneri Phage[J]. Biotechnology Bulletin, 2022, 38(9): 127-135.
抗生素名称 Antibiotic name | 抗生素浓度Antibiotic concentration /(μg·mL-1) | 药敏性Sensitivity |
---|---|---|
四环素 Tetracycline | 2 | R |
氯霉素 Chloramphenicol | 16 | R |
氨苄青霉素 Ampicillin | 100 | R |
卡那霉素 Kanamycin | 100 | S |
阿莫西林 Amoxicillin | 64 | R |
硫酸链霉素 Streptomycin | 30 | R |
庆大霉素 Gentamicin | 10 | R |
红霉素 Erythromycin | 15 | R |
利福平 Rifampin | 100 | R |
Table 1 Antibiotic sensitivity of host bacteria
抗生素名称 Antibiotic name | 抗生素浓度Antibiotic concentration /(μg·mL-1) | 药敏性Sensitivity |
---|---|---|
四环素 Tetracycline | 2 | R |
氯霉素 Chloramphenicol | 16 | R |
氨苄青霉素 Ampicillin | 100 | R |
卡那霉素 Kanamycin | 100 | S |
阿莫西林 Amoxicillin | 64 | R |
硫酸链霉素 Streptomycin | 30 | R |
庆大霉素 Gentamicin | 10 | R |
红霉素 Erythromycin | 15 | R |
利福平 Rifampin | 100 | R |
菌株 Bacterial strain | 敏感性 Sensitivity |
---|---|
Shigella flexneri B003 | + |
Shigella flexneri M001 | — |
Shigella flexneri M002 | — |
Shigella flexneri M003 | — |
Escherichia coli HB101 | — |
Escherichia coli DH5α | — |
Escherichia coli K12 | — |
Escherichia coli KN | — |
Escherichia coli OP50 | — |
Escherichia LFHY_s J001 | — |
Escherichia hermannii | — |
Enterobacter cloacae subsp | — |
Serratia nematodiphila | — |
Serratia marcescens | — |
Klebsiella africana | — |
Klebsiella pneumoniae subsp | — |
Table 2 Lytic range of phage P003
菌株 Bacterial strain | 敏感性 Sensitivity |
---|---|
Shigella flexneri B003 | + |
Shigella flexneri M001 | — |
Shigella flexneri M002 | — |
Shigella flexneri M003 | — |
Escherichia coli HB101 | — |
Escherichia coli DH5α | — |
Escherichia coli K12 | — |
Escherichia coli KN | — |
Escherichia coli OP50 | — |
Escherichia LFHY_s J001 | — |
Escherichia hermannii | — |
Enterobacter cloacae subsp | — |
Serratia nematodiphila | — |
Serratia marcescens | — |
Klebsiella africana | — |
Klebsiella pneumoniae subsp | — |
Accession No. | Escherichia phage | Coverage/% | Identity/% |
---|---|---|---|
NC_048194.1 | vB_EcoM_WFH | 96 | 99.18 |
MH051335.1 | vB_EcoM-Ro157lw | 94 | 97.22 |
JX128258.1 | ECML-117 | 92 | 97.04 |
MK903282.1 | Mansfield | 92 | 96.36 |
NC_048073.1 | FEC19 | 94 | 95.32 |
Table 3 Comparative analysis of phage P003 with virus database based on genome
Accession No. | Escherichia phage | Coverage/% | Identity/% |
---|---|---|---|
NC_048194.1 | vB_EcoM_WFH | 96 | 99.18 |
MH051335.1 | vB_EcoM-Ro157lw | 94 | 97.22 |
JX128258.1 | ECML-117 | 92 | 97.04 |
MK903282.1 | Mansfield | 92 | 96.36 |
NC_048073.1 | FEC19 | 94 | 95.32 |
[1] |
Mohr KI. History of antibiotics research[J]. Curr Top Microbiol Immunol, 2016, 398:237-272.
doi: 10.1007/82_2016_499 pmid: 27738915 |
[2] |
Jun JW, Kim JH, Shin SP, et al. Characterization and complete genome sequence of the Shigella bacteriophage pSf-1[J]. Res Microbiol, 2013, 164(10):979-986.
doi: 10.1016/j.resmic.2013.08.007 URL |
[3] |
Jennison AV, Verma NK. Shigella flexneri infection:pathogenesis and vaccine development[J]. FEMS Microbiol Rev, 2004, 28(1):43-58.
pmid: 14975529 |
[4] |
Yang CJ, Li P, Zhang XJ, et al. Molecular characterization and analysis of high-level multidrug-resistance of Shigella flexneri serotype 4s strains from China[J]. Sci Rep, 2016, 6:29124.
doi: 10.1038/srep29124 URL |
[5] |
Wittebole X, de Roock S, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens[J]. Virulence, 2014, 5(1):226-235.
doi: 10.4161/viru.25991 pmid: 23973944 |
[6] |
Sausset R, Petit MA, Gaboriau-Routhiau V, et al. New insights into intestinal phages[J]. Mucosal Immunol, 2020, 13(2):205-215.
doi: 10.1038/s41385-019-0250-5 pmid: 31907364 |
[7] |
Hobbs Z, Abedon ST. Diversity of phage infection types and associated terminology:the problem with ‘Lytic or lysogenic'[J]. FEMS Microbiol Lett, 2016, 363(7):fnw047.
doi: 10.1093/femsle/fnw047 URL |
[8] |
Koskella B, Meaden S. Understanding bacteriophage specificity in natural microbial communities[J]. Viruses, 2013, 5(3):806-823.
doi: 10.3390/v5030806 pmid: 23478639 |
[9] |
Dahlman S, Avellaneda-Franco L, Barr JJ. Phages to shape the gut microbiota?[J]. Curr Opin Biotechnol, 2021, 68:89-95.
doi: 10.1016/j.copbio.2020.09.016 URL |
[10] |
Chanishvili N. Phage therapy-history from Twort and d'Herelle through Soviet experience to current approaches[J]. Adv Virus Res, 2012, 83:3-40.
doi: 10.1016/B978-0-12-394438-2.00001-3 pmid: 22748807 |
[11] |
Law N, Logan C, Yung G, et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient[J]. Infection, 2019, 47(4):665-668.
doi: 10.1007/s15010-019-01319-0 URL |
[12] | Saussereau E, Vachier I, Chiron R, et al. Effectiveness of bacteriophages in the sputum of cystic fibrosis patients[J]. Clin Microbiol Infect, 2014, 20(12):O983-O990. |
[13] |
Wang XF, Wei Z, Yang KM, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nat Biotechnol, 2019, 37(12):1513-1520.
doi: 10.1038/s41587-019-0328-3 pmid: 31792408 |
[14] |
Xu J, Zhang RY, Yu XY, et al. Molecular characteristics of novel phage vB_ShiP-A7 infecting multidrug-resistant Shigella flexneri and Escherichia coli, and its bactericidal effect in vitro and in vivo[J]. Front Microbiol, 2021, 12:698962.
doi: 10.3389/fmicb.2021.698962 URL |
[15] |
Shahin K, Bouzari M. Bacteriophage application for biocontrolling Shigella flexneri in contaminated foods[J]. J Food Sci Technol, 2018, 55(2):550-559.
doi: 10.1007/s13197-017-2964-2 URL |
[16] |
Rahimzadeh G, Saeedi M, Moosazadeh M, et al. Encapsulation of bacteriophage cocktail into chitosan for the treatment of bacterial diarrhea[J]. Sci Rep, 2021, 11(1):15603.
doi: 10.1038/s41598-021-95132-1 pmid: 34341399 |
[17] |
Liao HP, Li X, Yang QE, et al. Herbicide selection promotes antibiotic resistance in soil microbiomes[J]. Mol Biol Evol, 2021, 38(6):2337-2350.
doi: 10.1093/molbev/msab029 pmid: 33592098 |
[18] | Chen YX, Chen YS, Shi CM, et al. SOAPnuke:a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data[J]. GigaScience, 2018, 7(1):1-6. |
[19] |
Li RQ, Li YR, Kristiansen K, et al. SOAP:short oligonucleotide alignment program[J]. Bioinformatics, 2008, 24(5):713-714.
doi: 10.1093/bioinformatics/btn025 URL |
[20] |
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2010, 26(5):589-595.
doi: 10.1093/bioinformatics/btp698 pmid: 20080505 |
[21] |
Bankevich A, Nurk S, Antipov D, et al. SPAdes:a new genome assembly algorithm and its applications to single-cell sequencing[J]. J Comput Biol, 2012, 19(5):455-477.
doi: 10.1089/cmb.2012.0021 pmid: 22506599 |
[22] |
Zhu WH, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences[J]. Nucleic Acids Res, 2010, 38(12):e132.
doi: 10.1093/nar/gkq275 URL |
[23] | Hulo C, de Castro E, Masson P, et al. ViralZone:a knowledge resource to understand virus diversity[J]. Nucleic Acids Res, 2011, 39(Database issue):D576-D582. |
[24] | Grant JR, Stothard P. The CGView Server:a comparative genomics tool for circular genomes[J]. Nucleic Acids Res, 2008, 36(Web Server issue):W181-W184. |
[25] |
Darling ACE, Mau B, Blattner FR, et al. Mauve:multiple alignment of conserved genomic sequence with rearrangements[J]. Genome Res, 2004, 14(7):1394-1403.
pmid: 15231754 |
[26] |
Tamura K, Stecher G, Peterson D, et al. MEGA6:molecular evolutionary genetics analysis version 6. 0[J]. Mol Biol Evol, 2013, 30(12):2725-2729.
doi: 10.1093/molbev/mst197 URL |
[27] |
Jończyk-Matysiak E, Łodej N, Kula D, et al. Factors determining phage stability/activity:challenges in practical phage application[J]. Expert Rev Anti Infect Ther, 2019, 17(8):583-606.
doi: 10.1080/14787210.2019.1646126 pmid: 31322022 |
[28] |
McAllister TA, Wang YX, Diarra MS, et al. Challenges of a one-health approach to the development of alternatives to antibiotics[J]. Anim Front, 2018, 8(2):10-20.
doi: 10.1093/af/vfy002 pmid: 32002214 |
[29] | 程古月, 郝海红, 谢书宇, 等. 抗生素替代品的研究进展[J]. 中国农学通报, 2014, 30(35):97-106. |
Cheng GY, Hao HH, Xie SY, et al. Advances of antibiotic alternatives[J]. Chin Agric Sci Bull, 2014, 30(35):97-106. | |
[30] | Tao MH, Ao TR, Mao XY, et al. Sterilization and disinfection methods for decellularized matrix materials:Review, consideration and proposal[J]. Bioact Mater, 2021, 6(9):2927-2945. |
[31] |
Clokie MRJ, Millard AD, Letarov AV, et al. Phages in nature[J]. Bacteriophage, 2011, 1(1):31-45.
doi: 10.4161/bact.1.1.14942 pmid: 21687533 |
[32] |
Rehman S, Ali Z, Khan M, et al. The dawn of phage therapy[J]. Rev Med Virol, 2019, 29(4):e2041.
doi: 10.1002/rmv.2041 pmid: 31050070 |
[33] |
Fabijan AP, Lin RCY, Ho J, et al. Safety of bacteriophage therapy in severe Staphylococcus aureus infection[J]. Nat Microbiol, 2020, 5(3):465-472.
doi: 10.1038/s41564-019-0634-z URL |
[34] | Melo LDR, Veiga P, Cerca N, et al. Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections[J]. Front Microbiol, 2016, 7:1024. |
[35] |
Hajialibeigi A, Amani J, Gargari SLM. Identification and evaluation of novel vaccine candidates against Shigella flexneri through reverse vaccinology approach[J]. Appl Microbiol Biotechnol, 2021, 105(3):1159-1173.
doi: 10.1007/s00253-020-11054-4 pmid: 33452891 |
[36] | 何秀, 邓征宇, 王峰, 等. 一株福氏志贺氏菌噬菌体的分离鉴定及其生物学特性[J]. 微生物学通报, 2021, 48(9):3165-3175. |
He X, Deng ZY, Wang F, et al. Isolation and biological characterization of a bacteriophage infecting Shigella flexneri[J]. Microbiol China, 2021, 48(9):3165-3175. | |
[37] |
Sharma M, Patel JR, Conway WS, et al. Effectiveness of bacteriophages in reducing Escherichia coli O157:H7 on fresh-cut cantaloupes and lettucet[J]. J Food Prot, 2009, 72(7):1481-1485.
doi: 10.4315/0362-028X-72.7.1481 URL |
[38] | Hyman P. Phages for phage therapy:isolation, characterization, and host range breadth[J]. Pharmaceuticals(Basel), 2019, 12(1):35. |
[39] |
Zhang JX, He XL, Shen SQ, et al. Effects of the newly isolated T4-like phage on transmission of plasmid-borne antibiotic resistance genes via generalized transduction[J]. Viruses, 2021, 13(10):2070.
doi: 10.3390/v13102070 URL |
[1] | WANG Teng-hui, GE Wen-dong, LUO Ya-fang, FAN Zhen-yu, WANG Yu-shu. Gene Mapping of Kale White Leaves Based on Whole Genome Re-sequencing of Extreme Mixed Pool(BSA) [J]. Biotechnology Bulletin, 2023, 39(9): 176-182. |
[2] | FANG Lan, LI Yan-yan, JIANG Jian-wei, CHENG Sheng, SUN Zheng-xiang, ZHOU Yi. Isolation, Identification and Growth-promoting Characteristics of Endohyphal Bacterium 7-2H from Endophytic Fungi of Spiranthes sinensis [J]. Biotechnology Bulletin, 2023, 39(8): 272-282. |
[3] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
[4] | ZHOU Zhen-chao, ZHENG Ji, SHUAI Xin-yi, LIN Ze-jun, CHEN Hong. High-throughput Profiling and Analysis of Shared Antibiotic Resistance Genes in Human Feces, Skin and Water Environments [J]. Biotechnology Bulletin, 2023, 39(7): 288-297. |
[5] | LI Tuo, LI Long-ping, QU Lei. Research Progress in the Structure of Tailed Bacteriophage and Its Receptors [J]. Biotechnology Bulletin, 2023, 39(6): 88-101. |
[6] | ZHANG Zhi-xia, LI Tian-pei, ZENG Hong, ZHU Xi-xian, YANG Tian-xiong, MA Si-nan, HUANG Lei. Genome Sequencing and Bioinformatics Analysis of Gelidibacter sp. PG-2 [J]. Biotechnology Bulletin, 2023, 39(3): 290-300. |
[7] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[8] | ZHANG Ao-jie, LI Qing-yun, SONG Wen-hong, YAN Shao-hui, TANG Ai-xing, LIU You-yan. Whole Genome Sequencing Analysis of a Phenol-degrading Strain Alcaligenes faecalis JF101 [J]. Biotechnology Bulletin, 2023, 39(10): 292-303. |
[9] | WANG Shuai, LV Hong-rui, ZHANG Hao, WU Zhan-wen, XIAO Cui-hong, SUN Dong-mei. Whole-Genome Sequencing Identification of Phosphate-solubilizing Bacteria PSB-R and Analysis of Its Phosphate-solubilizing Properties [J]. Biotechnology Bulletin, 2023, 39(1): 274-283. |
[10] | HU Xue-ying, ZHANG Yue, GUO Ya-jie, QIU Tian-lei, GAO Min, SUN Xing-bin, WANG Xu-ming. Comparison in Antibiotic Resistance Genes Carried by Bacteriophages and Bacteria in Farmland Soil Amended with Different Fertilizers [J]. Biotechnology Bulletin, 2022, 38(9): 116-126. |
[11] | LI Ji-hong, JING Yu-ling, MA Gui-zhen, GUO Rong-jun, LI Shi-dong. Genome Construction of Achromobacter 77 and Its Characteristics on Chemotaxis and Antibiotic Resistance [J]. Biotechnology Bulletin, 2022, 38(9): 136-146. |
[12] | XU Chong-xin, ZHANG Xiao, LIU Yuan, ZHONG Jian-feng, XIE Ya-jing, LU Li-na, GAO Mei-jing, LIU Xian-jin. Screening and Identification of Humanized Genetically Engineered Antibody Targeting to Simulate the Anti-insect Function of Bt Cry1C Protein [J]. Biotechnology Bulletin, 2022, 38(5): 191-200. |
[13] | WANG Jia-li, HE Si-qi, KANG Zi-xi, WANG Jian-xun. Antibody Phage Display Technology and Its Application in the Discovery of Anti-SARS-CoV-2 Antibodies [J]. Biotechnology Bulletin, 2022, 38(5): 248-256. |
[14] | ZHANG Jun-feng, LI Meng-ke, WU Zhi-hao, CUI Xiao-long, XIAO wei, ZHANG Shi-ying. Effects of Bacteriophages DCEAV-31 and DCEIV-9 on the Algicidal Characteristics of Algicidal Bacterium Against Microcystis [J]. Biotechnology Bulletin, 2022, 38(11): 250-257. |
[15] | ZHANG Ze-ying, FAN Qing-feng, DENG Yun-feng, WEI Ting-zhou, ZHOU Zheng-fu, ZHOU Jian, WANG Jin, JIANG Shi-jie. Whole Genome Sequencing and Comparative Genomic Analysis of a High-yield Lipase-producing Strain WCO-9 [J]. Biotechnology Bulletin, 2022, 38(10): 216-225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||