Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (5): 286-296.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1031
Previous Articles Next Articles
LUO Yi1(), ZHANG Li-juan2,3, HUANG Wei2, WANG Ning2, Wuerlika MAITIHASEM4, SHI Chong1(), WANG Wei2()
Received:
2022-08-23
Online:
2023-05-26
Published:
2023-06-08
Contact:
SHI Chong, WANG Wei
E-mail:651335178@qq.com;shichong98@163.com;mypony926@163.com
LUO Yi, ZHANG Li-juan, HUANG Wei, WANG Ning, Wuerlika MAITIHASEM, SHI Chong, WANG Wei. Identification of a Uranium-resistant Strain and Its Growth-promoting Properties[J]. Biotechnology Bulletin, 2023, 39(5): 286-296.
生化特征Biochemical characteristics | B2 | Microvirga makkahensis SV1470T[ | M. lupini Lut6T[ | M. aerophila DSM 21344T[ | M. flavescens c27j1T[ |
---|---|---|---|---|---|
菌株来源Source of strain | 土壤 | 土壤 | 根瘤 | 空气 | 土壤 |
培养基Medium | 在NA、R2A、LB生长良好 | 在改良的Bennett's、察氏、NA、ISP2、YMA、Rauff、R2A生长良好 | 在1/2LA、YMA、TY、NA生长良好 | 在R2A、NA生长良好,在TSA、2216E不生长 | 在R2A、PYE生长良好,在TSA、NA不生长 |
菌落颜色Color of colony | 浅粉色 | 浅粉色 | 淡橙色 | 浅粉色 | 淡黄色 |
革兰氏染色Gram stain | G- | G- | G- | G- | G- |
细胞形状Cell shape | 棒状 | 棒状 | 棒状 | 棒状 | 棒状 |
好氧性试验 Aerobic test | 严格好氧 | 严格好氧 | 严格好氧 | 严格好氧 | 严格好氧 |
产孢子Producing spores | - | - | - | - | - |
运动性Motility | - | + | - | - | + |
细胞长×细胞宽Cell length(μm)× Cell width(μm) | (1.1-1.9)×(0.5-0.7) | (1.0-1.6)×(0.8-1.3) | (1.0-2.2)×(0.4-0.5) | (1.6-4.2)×(0.8-1.1) | (1.8-4.2)×(0.4-0.7) |
细胞色素氧化酶 Cytochrome oxidase | + | / | - | + | + |
过氧化氢酶Oxidase | + | + | - | + | + |
产吲哚Producing indoles | + | / | w | - | - |
产H2S Producing hydrogen sulphide | - | / | - | / | / |
明胶液化Hydrolysis of gelatin | + | + | - | - | - |
硝酸盐还原Nitrate reduction | + | - | - | - | + |
柠檬酸盐利用Citrate utilization | + | / | - | / | / |
脲酶Urease | - | - | + | - | - |
淀粉酶Amylase | / | - | - | + | - |
β-半乳糖苷酶 β-galactosidase | - | / | - | - | / |
精氨酸双水介酶Arginine hydrophilic enzyme | - | + | - | - | - |
Table1 Physiological characteristics of strain B2
生化特征Biochemical characteristics | B2 | Microvirga makkahensis SV1470T[ | M. lupini Lut6T[ | M. aerophila DSM 21344T[ | M. flavescens c27j1T[ |
---|---|---|---|---|---|
菌株来源Source of strain | 土壤 | 土壤 | 根瘤 | 空气 | 土壤 |
培养基Medium | 在NA、R2A、LB生长良好 | 在改良的Bennett's、察氏、NA、ISP2、YMA、Rauff、R2A生长良好 | 在1/2LA、YMA、TY、NA生长良好 | 在R2A、NA生长良好,在TSA、2216E不生长 | 在R2A、PYE生长良好,在TSA、NA不生长 |
菌落颜色Color of colony | 浅粉色 | 浅粉色 | 淡橙色 | 浅粉色 | 淡黄色 |
革兰氏染色Gram stain | G- | G- | G- | G- | G- |
细胞形状Cell shape | 棒状 | 棒状 | 棒状 | 棒状 | 棒状 |
好氧性试验 Aerobic test | 严格好氧 | 严格好氧 | 严格好氧 | 严格好氧 | 严格好氧 |
产孢子Producing spores | - | - | - | - | - |
运动性Motility | - | + | - | - | + |
细胞长×细胞宽Cell length(μm)× Cell width(μm) | (1.1-1.9)×(0.5-0.7) | (1.0-1.6)×(0.8-1.3) | (1.0-2.2)×(0.4-0.5) | (1.6-4.2)×(0.8-1.1) | (1.8-4.2)×(0.4-0.7) |
细胞色素氧化酶 Cytochrome oxidase | + | / | - | + | + |
过氧化氢酶Oxidase | + | + | - | + | + |
产吲哚Producing indoles | + | / | w | - | - |
产H2S Producing hydrogen sulphide | - | / | - | / | / |
明胶液化Hydrolysis of gelatin | + | + | - | - | - |
硝酸盐还原Nitrate reduction | + | - | - | - | + |
柠檬酸盐利用Citrate utilization | + | / | - | / | / |
脲酶Urease | - | - | + | - | - |
淀粉酶Amylase | / | - | - | + | - |
β-半乳糖苷酶 β-galactosidase | - | / | - | - | / |
精氨酸双水介酶Arginine hydrophilic enzyme | - | + | - | - | - |
Fig. 2 Phylogenetic tree reconstructed by the neighbor-joining method, based on the 16S rDNA sequence of strain B2 The value on the branch indicates the percentage of the node formed in 1 000 calculations when the neighbor-joining method is used to construct the phylogenetic tree. Numbers in parentheses are the GenBank accession numbers. Numbers at the nodes indicate the Bootstrap value. The scale bar indicates 1% nucleotide substitution
Fig. 5 Effects of strain B2 on the seed growth of B. chine-nsis L. A: Effects of strain B2 on germination potential and percentage of B. chinensis L. B: Effects of strain B2 on germination index and vitality index of B. chinensis L.. C: Effect of strain B2 on root and bud length of B. chinensis L. * P < 0.05, and ** P < 0.01. The same below
处理Treatment | 株高Plant height/cm | 根长Root length/cm | 茎粗Stem thickness/mm | 叶片数Number of leaves | 叶宽Leaf width/cm | 叶长Leaf length/cm | 鲜重Fresh weight | 干重 Dry weight | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
地上Above ground/g | 地下Underground/g | 地上Above ground/g | 地下Underground/g | |||||||||
CK | 13.68±1.38 | 12.12±2.45 | 3.50±0.50 | 4.40±0.89 | 3.38±0.69 | 5.51±1.16 | 2.53±0.94 | 0.44±0.25 | 0.38±0.16 | 0.09±0.02 | ||
B2 | 17.35±0.97** | 18.70±4.51* | 5.25±0.50** | 6.75±0.50** | 5.23±0.59** | 7.58±1.19** | 9.23±2.54** | 2.40±0.75** | 0.86±0.12** | 0.28±0.07** |
Table 2 Effects of strain B2 treatment on growth traits of B. chinensis L.
处理Treatment | 株高Plant height/cm | 根长Root length/cm | 茎粗Stem thickness/mm | 叶片数Number of leaves | 叶宽Leaf width/cm | 叶长Leaf length/cm | 鲜重Fresh weight | 干重 Dry weight | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
地上Above ground/g | 地下Underground/g | 地上Above ground/g | 地下Underground/g | |||||||||
CK | 13.68±1.38 | 12.12±2.45 | 3.50±0.50 | 4.40±0.89 | 3.38±0.69 | 5.51±1.16 | 2.53±0.94 | 0.44±0.25 | 0.38±0.16 | 0.09±0.02 | ||
B2 | 17.35±0.97** | 18.70±4.51* | 5.25±0.50** | 6.75±0.50** | 5.23±0.59** | 7.58±1.19** | 9.23±2.54** | 2.40±0.75** | 0.86±0.12** | 0.28±0.07** |
[1] |
Wei GL, Han WH, Shu XY, et al. Heavy-ion irradiation effects on uranium-contaminated soil for nuclear waste[J]. J Hazard Mater, 2021, 405: 124273.
doi: 10.1016/j.jhazmat.2020.124273 URL |
[2] |
Cheng CH, Chen LY, Guo KX, et al. Progress of uranium-contaminated soil bioremediation technology[J]. J Environ Radioact, 2022, 241: 106773.
doi: 10.1016/j.jenvrad.2021.106773 URL |
[3] | 钟娟, 刘兴宇, 张明江, 等. 铀污染的微生物修复技术研究进展[J]. 稀有金属, 2021, 45(1): 93-105. |
Zhong J, Liu XY, Zhang MJ, et al. Research progress of bioremediation technology for uranium contamination[J]. Chin J Rare Met, 2021, 45(1): 93-105. | |
[4] | Li XL, Ding CC, Liao JL, et al. Microbial reduction of uranium(VI)by Bacillus sp. dwc-2: a macroscopic and spectroscopic study[J]. J Environ Sci(China), 2017, 53: 9-15. |
[5] |
Liang XJ, Csetenyi L, Gadd GM. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates[J]. Appl Microbiol Biotechnol, 2016, 100(11): 5141-5151.
doi: 10.1007/s00253-016-7327-9 pmid: 26846744 |
[6] | 梁朱明. 超富集植物体微生物减容减重应用基础研究[D]. 绵阳: 西南科技大学, 2020. |
Liang ZM. Basic research on the applation of microorganism in volume and weight reduction of hyperconcentration plants[D]. Mianyang: Southwest University of Science and Technology, 2020. | |
[7] |
Yuan Y, Liu N, Dai Y, et al. Effective biosorption of uranium from aqueous solution by cyanobacterium Anabaena flos-aquae[J]. Environ Sci Pollut Res Int, 2020, 27(35): 44306-44313.
doi: 10.1007/s11356-020-10364-4 |
[8] |
Chen L, Liu JR, Zhang WX, et al. Uranium(U)source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: a review[J]. J Hazard Mater, 2021, 413: 125319.
doi: 10.1016/j.jhazmat.2021.125319 URL |
[9] |
Zheng XY, Shen YH, Wang XY, et al. Effect of pH on uranium(VI)biosorption and biomineralization by Saccharomyces cerevisiae[J]. Chemosphere, 2018, 203: 109-116.
doi: S0045-6535(18)30588-5 pmid: 29614403 |
[10] |
杨晓玫, 冯起, 吕丹彤, 等. 植物根际促生菌Bacillus mycoides Gnyt1菌株生物学特性比较研究[J]. 草地学报, 2022, 30(3): 553-559.
doi: 10.11733/j.issn.1007-0435.2022.03.006 |
Yang XM, Feng Q, Lyu DT, et al. Comparative study on the biological characteristics of plant rhizosphere growth-promoting bacteria Bacillus mycoides Gnyt1[J]. Acta Agrestia Sin, 2022, 30(3): 553-559. | |
[11] |
Ke T, Guo GY, Liu JR, et al. Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains[J]. Environ Pollut, 2021, 271: 116314.
doi: 10.1016/j.envpol.2020.116314 URL |
[12] |
亓琳, 杨莹博, 张博, 等. 丛枝菌根真菌强化高粱幼苗修复锶污染土壤的研究[J]. 草业学报, 2018, 27(12): 103-112.
doi: 10.11686/cyxb2018333 |
Qi L, Yang YB, Zhang B, et al. Arbuscular mycorrhizal fungi(AMF)enhance phytoremediation of strontium-contaminated soil by Sorghum bicolor seedlings[J]. Acta Prataculturae Sin, 2018, 27(12): 103-112. | |
[13] |
王焯, 罗学刚, 丁翰林, 等. 一种耐铀植物促生菌的筛选及促生特性研究[J]. 生物技术通报, 2019, 35(1): 42-50.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0577 |
Wang Z, Luo XG, Ding HL, et al. Isolation and identification of a uranium-resistant strain and effect of its characteristics on growth promoting[J]. Biotechnol Bull, 2019, 35(1): 42-50.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0577 |
|
[14] |
Bhakat K, Chakraborty A, Islam E. Characterization of arsenic oxidation and uranium bioremediation potential of arsenic resistant bacteria isolated from uranium ore[J]. Environ Sci Pollut Res Int, 2019, 26(13): 12907-12919.
doi: 10.1007/s11356-019-04827-6 |
[15] | 蒋小梅. 土著微生物菌群的选育及除铀效能试验研究[D]. 衡阳: 南华大学, 2018. |
Jiang XM. The selection and effectiveness studies to uranium of native microbial consortium[D]. Hengyang: University of South China, 2018. | |
[16] | 胡南, 陈思羽, 胡劲松, 等. 一株耐铀镉真菌菌株的筛选及其耐铀镉特性的研究[J]. 南华大学学报: 自然科学版, 2019, 33(2): 16-21. |
Hunan, Chen SY, Hu JS, et al. Screening of a uranium-cadmium tolerant fungal strain and its uranium-cadmium tolerance[J]. J Univ South China Sci Technol, 2019, 33(2): 16-21. | |
[17] | 张健, 宋晗, 邓洪, 等. 铀与微生物相互作用研究进展[J]. 矿物岩石地球化学通报, 2018, 37(1): 55-62, 158. |
Zhang J, Song H, Deng H, et al. Research progress on interaction between uranium and microorganism[J]. Bull Mineral Petrol Geochem, 2018, 37(1): 55-62, 158. | |
[18] | 张远科. 纤维素酶产生菌的筛选、产酶特性及酶基因克隆表达[D]. 株洲: 湖南工业大学, 2022. |
Zhang YK. Screening, enzyme production characteristics, and gene cloning and expression of cellulase-producing strain[D]. Zhuzhou: Hunan University of Technology, 2022. | |
[19] | 周贝贝. 植物根际促生菌的筛选及其在草莓上的应用研究[D]. 泰安: 山东农业大学, 2018. |
Zhou BB. Screening of plant growth-promoting rhizobacteria and its application in strawberry[D]. Tai'an: Shandong Agricultural University, 2018. | |
[20] | 王君. 蓝莓根际促生细菌的筛选、鉴定及其促生效果[D]. 泰安: 山东农业大学, 2016. |
Wang J. Screening, identification and growth-promoting effects of PGPR from blueberry rhizosphere[D]. Tai'an: Shandong Agricultural University, 2016. | |
[21] |
Yong P, Eccles H, Macaskie LE. Determination of uranium, thorium and lanthanum in mixed solutions using simultaneous spectrophotometry[J]. Anal Chimica Acta, 1996, 329(1/2): 173-179.
doi: 10.1016/0003-2670(96)00101-8 URL |
[22] | 杜浪, 李玉香, 马雪, 等. 偶氮胂Ⅲ分光光度法测定微量铀[J]. 冶金分析, 2015, 35(1): 68-71. |
Du L, Li YX, Ma X, et al. Determination of micro uranium by arsenazo Ⅲ spectrophotometry[J]. Metall Anal, 2015, 35(1): 68-71. | |
[23] | 张垚, 张芝, 王志刚, 等. 辣椒根际促生菌筛选鉴定及其促生效应初探[J]. 浙江农业科学, 2022, 63(5): 958-963. |
Zhang Y, Zhang Z, Wang ZG, et al. Screening, identification of growth-promoting rhizobacteria in pepper and preliminary study on its promoting effect[J]. J Zhejiang Agric Sci, 2022, 63(5): 958-963. | |
[24] | 张凯晔. 田菁种子内生菌的分离及其促生功能研究[D]. 太谷: 山西农业大学, 2020. |
Zhang KY. Isolation of endophytes from Sesbania cannabina and plant growth-promoting characteristics of endophyte[D]. Taigu: Shanxi Agricultural University, 2020. | |
[25] | 李柯, 施宠, 王文全, 等. 重金属Pb胁迫下内生真菌侵染对德兰臭草种子萌发及生长的影响[J]. 农业资源与环境学报, 2020, 37(2): 280-286. |
Li K, Shi C, Wang WQ, et al. Seed germination and growth effects of endophyte infection on Melica transsilvanica under Pb stress[J]. J Agric Resour Environ, 2020, 37(2): 280-286. | |
[26] |
Veyisoglu A, Tatar D, Saygin H, et al. Microvirga makkahensis sp. nov., and Microvirga arabica sp. nov., isolated from sandy arid soil[J]. Antonie Van Leeuwenhoek, 2016, 109(2): 287-296.
doi: 10.1007/s10482-015-0631-z pmid: 26671415 |
[27] |
Ardley JK, Parker MA, de Meyer SE, et al. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts[J]. Int J Syst Evol Microbiol, 2012, 62(Pt 11): 2579-2588.
doi: 10.1099/ijs.0.035097-0 URL |
[28] |
Weon HY, Kwon SW, Son JA, et al. Description of Microvirga aerophila sp. nov. and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov. and emended description of the genus Microvirga[J]. Int J Syst Evol Microbiol, 2010, 60(Pt 11): 2596-2600.
doi: 10.1099/ijs.0.018770-0 URL |
[29] |
Zhang XJ, Zhang J, Yao Q, et al. Microvirga flavescens sp. nov., a novel bacterium isolated from forest soil and emended description of the genus Microvirga[J]. Int J Syst Evol Microbiol, 2019, 69(3): 667-671.
doi: 10.1099/ijsem.0.003189 URL |
[30] |
Pramanik K, Mitra S, Sarkar A, et al. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092[J]. J Hazard Mater, 2018, 351: 317-329.
doi: 10.1016/j.jhazmat.2018.03.009 URL |
[31] |
Tapase SR, Kodam KM. Assessment of arsenic oxidation potential of Microvirga indica S-MI1b sp. nov. in heavy metal polluted environment[J]. Chemosphere, 2018, 195: 1-10.
doi: 10.1016/j.chemosphere.2017.12.022 URL |
[32] | 刘清, 徐伟昌, 招国栋, 等. 铀和铅对枯草杆菌毒性的研究[J]. 环境污染与防治, 2007, 29(4): 247-249, 253. |
Liu Q, Xu WC, Zhao GD, et al. Toxic effects of uranium and lead to B. subtilis[J]. Environ Pollut & Control, 2007, 29(4): 247-249, 253. | |
[33] | 郭俊, 潘虎, 张晓明, 等. 微生物耐受重金属的作用机制[J]. 东北农业科学, 2023, 48(1):136-139. |
Guo J, Pan H, Zhang XM, et al. Advance on mechanisms for heavy metals tolerance of microorganisms[J]. J Northeast Agric Sci, 2023, 48(1):136-139. | |
[34] |
Liu ZT, Xian WD, Li MM, et al. Microvirga arsenatis sp. nov., an arsenate reduction bacterium isolated from Tibet hot spring sediments[J]. Antonie Van Leeuwenhoek, 2020, 113(8): 1147-1153.
doi: 10.1007/s10482-020-01421-6 |
[35] |
Mouad L, Hanane L, Omar B, et al. Nodulation of Retama species by members of the genus Microvirga in Morocco[J]. Symbiosis, 2020, 82(3): 249-258.
doi: 10.1007/s13199-020-00725-5 |
[36] |
Jiménez-Gómez A, Saati-Santamaría Z, Igual JM, et al. Genome insights into the novel species Microvirga brassicacearum, a rapeseed endophyte with biotechnological potential[J]. Microorganisms, 2019, 7(9): 354.
doi: 10.3390/microorganisms7090354 URL |
[37] |
李福艳, 刘晓玉, 颜静婷, 等. 三株产吲哚乙酸根际促生芽孢杆菌的筛选鉴定及其促生作用[J]. 浙江农业学报, 2021, 33(5): 873-884.
doi: 10.3969/j.issn.1004-1524.2021.05.13 |
Li FY, Liu XY, Yan JT, et al. Isolation and identification of three indole-3-acetic acid producing plant-growth-promoting rhizosphere Bacillus sp. and their growth-promoting effects[J]. Acta Agric Zhejiangensis, 2021, 33(5): 873-884. | |
[38] |
Bruno LB, Anbuganesan V, Karthik C, et al. Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus[J]. J Environ Manage, 2021, 289: 112553.
doi: 10.1016/j.jenvman.2021.112553 URL |
[39] |
Pal AK, Sengupta C. Isolation of cadmium and lead tolerant plant growth promoting rhizobacteria: Lysinibacillus varians and Pseudomonas putida from Indian agricultural soil[J]. Soil Sediment Contam Int J, 2019, 28(7): 601-629.
doi: 10.1080/15320383.2019.1637398 URL |
[40] |
Gheidary S, Akhzari D, Pessarakli M. Effects of salinity, drought, and priming treatments on seed germination and growth parameters of Lathyrus sativus L[J]. J Plant Nutr, 2017, 40(10): 1507-1514.
doi: 10.1080/01904167.2016.1269349 URL |
[41] | 赵继武. 土壤—植物系统中铀生物有效性和迁移模型的研究[D]. 绵阳: 西南科技大学, 2020. |
Zhao JW. Study on uranium bioavailability and migration model in soil-plant system[D]. Mianyang: Southwest University of Science and Technology, 2020. | |
[42] |
Santoyo G, Urtis-Flores CA, Loeza-Lara PD, et al. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria(PGPR)[J]. Biology, 2021, 10(6): 475.
doi: 10.3390/biology10060475 URL |
[43] | 黄一绥, 邱健斌, 佘晨兴, 等. 土壤重金属污染对上海青根伸长的抑制效应研究[J]. 热带作物学报, 2011, 32(11): 2133-2137. |
Huang YS, Qiu JB, She CX, et al. Influence of soil heavy metal pollution on the root elongation of Brassica rapa L[J]. Chin J Trop Crops, 2011, 32(11): 2133-2137. |
[1] | LI Huan-min, GAO Feng-tao, LI Wei-zhong, WANG Jin-qing, FENG Jia-li. Progress in Research and Application of Natural Bio-materials as Immobilized Carriers [J]. Biotechnology Bulletin, 2023, 39(7): 105-112. |
[2] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[3] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
[4] | GAO Ya-hui, JIANG Ming-guo, FENG Jing, ZHOU Gui. Screening of Potential PGPR Strains Producting Growth-promoting Volatile Compounds and Study on Their Growth-promoting Characteristics [J]. Biotechnology Bulletin, 2022, 38(3): 103-112. |
[5] | LI Bing-juan, ZHENG Lu, SHEN Ren-fang, LAN Ping. Proteomic Analysis of RPP1A Involved in the Seedling Growth of Arabidopsis thaliana [J]. Biotechnology Bulletin, 2022, 38(2): 10-20. |
[6] | MO Li-jie, LIU Xia-tong, LI Hui, LU Hai. On the Function of Plant Cysteine Protease in Plant Growth and Development [J]. Biotechnology Bulletin, 2021, 37(6): 202-212. |
[7] | ZHAI Xu-hang, LI Xia, YUAN Ying-jin. Research Progress of Lignocellulose Pretreatment and Valorization Method [J]. Biotechnology Bulletin, 2021, 37(3): 162-174. |
[8] | LI Xin-yue, ZHANG Jin-fang, XU Xiao-jian, LU Fu-ping, LI Yu. Effects of Spore Formation Related Gene Deletion on Biomass and Extracellular Enzyme Expression of Bacillus amyloliquefaciens [J]. Biotechnology Bulletin, 2021, 37(3): 35-43. |
[9] | WANG Qi-yuan, WANG Jia-chen, YE Lei, JIANG Fan. Research Advances on Enhancement of Plant Resistance to Salinity Stress by Rhizobacteria Containing ACC Deaminase [J]. Biotechnology Bulletin, 2021, 37(2): 174-186. |
[10] | FU Yan-song, LI Yu-cong, XU Zhi-hui, SHAO Jia-hui, LIU Yun-peng, XUAN Wei, ZHANG Rui-fu. Research Progressing in Signals and Molecular Mechanisms of Plant Growth-Promoting Rhizobacteria to Regulate Plant Root Development [J]. Biotechnology Bulletin, 2020, 36(9): 42-48. |
[11] | PAN Jing, HUANG Cui-hua, PENG Fei, YOU Quan-gang, LIU Fei-yao, XUE Xian. Mechanisms of Salt Tolerance and Growth Promotion in Plant Induced by Plant Growth-Promoting Rhizobacteria [J]. Biotechnology Bulletin, 2020, 36(9): 75-87. |
[12] | LEI Hai-ying, ZHAO Qing-song, YANG Xiao, WANG Mao-mao, BAI Jie, SUN Yong-qi, WANG Zhi-jun. Isolation of Efficient Nitrogen-fixing Bacteria from the Rhizosphere of Sophora flavescens and the Growth-promoting Effect of Compound Microbial Fertilizer on Seedlings [J]. Biotechnology Bulletin, 2020, 36(9): 157-166. |
[13] | JIN Hai-yang, WANG Hui, ZHANG Yan-hui, HU Tian-long, LIN Zhi-bin, LIU Ben-juan, LIN Xing-wu, XIE Zu-bin. Isolation,Screening and Plant Growth-promoting Potential of Nitrogen-fixing Strains from Paddy Soils [J]. Biotechnology Bulletin, 2020, 36(6): 73-82. |
[14] | WAN Shui-xia, WANG Jing, LI Fan, JIANG Guang-yue, XU Wen-jing, LIU Zuo-jun. Screening and Identification of Phosphate Solubilizing Bacteria from Maize Rhizosphere Soil and Its Growth Promoting Effect [J]. Biotechnology Bulletin, 2020, 36(5): 98-103. |
[15] | YANG Mo, GAO Ting, LI Yan-jing, WEI Chong-yao, GAO Miao, MA Lian-ju. Isolation and Screening of Plant Growth-promoting Rhizobacteria in Pepper and Their Disease-resistant Growth-promoting Characteristics [J]. Biotechnology Bulletin, 2020, 36(5): 104-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||