Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (8): 291-306.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1507
Previous Articles Next Articles
GUO Shao-hua(), MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi()
Received:
2022-12-09
Online:
2023-08-26
Published:
2023-09-05
Contact:
GUAN Jian-yi
E-mail:guoshaohua0114@163.com;jianyiguan@163.com
GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG[J]. Biotechnology Bulletin, 2023, 39(8): 291-306.
序列长度范围 Sequence length range/kb | 基因骨架的数量 Number of scaffolds | 重叠群的数量 Number of contigs |
---|---|---|
>9 | 24 | 24 |
8-9 | 0 | 0 |
7-8 | 0 | 0 |
6-7 | 1 | 1 |
5-6 | 1 | 1 |
4-5 | 1 | 1 |
3-4 | 0 | 0 |
2-3 | 3 | 3 |
1-2 | 4 | 4 |
0-1 | 13 | 13 |
Table 1 Aeromonas hydrophila XDMG genome backbone data
序列长度范围 Sequence length range/kb | 基因骨架的数量 Number of scaffolds | 重叠群的数量 Number of contigs |
---|---|---|
>9 | 24 | 24 |
8-9 | 0 | 0 |
7-8 | 0 | 0 |
6-7 | 1 | 1 |
5-6 | 1 | 1 |
4-5 | 1 | 1 |
3-4 | 0 | 0 |
2-3 | 3 | 3 |
1-2 | 4 | 4 |
0-1 | 13 | 13 |
菌株 Strain | 基因长度 Gene length/Mb | GC含量 GC Content/% | 编码基因 Cds | rRNA | tRNA | 年份 Year | 来源 Source | 来源地 Source location |
---|---|---|---|---|---|---|---|---|
J-1 | 5.00 | 60.9 | 4 268 | 31 | 110 | 1989 | 病鲤鱼Diseased Carp | 中国南京Nanjing, China |
AL09_71 | 5.02 | 60.8 | 4 297 | 31 | 111 | 2009 | 斑点叉尾鮰Channel catfish | 美国USA |
AH10 | 4.91 | 61.1 | 4 327 | 33 | 128 | 2012 | 病草鱼Diseased Ctenopharyngodon idella | 中国上海Shanghai, China |
ATCC_7966 | 4.74 | 61.5 | 4 119 | 31 | 127 | 不详 | 牛奶Milk | 美国USA |
XDMG | 4.99 | 60.8 | 4 935 | 3 | 99 | 2009 | 病麦穗鱼Diseased Pseudorasbora parva | 中国新乡Xinxiang, China |
Table 2 General characteristics of the five Aeromonas hydrophila genomes
菌株 Strain | 基因长度 Gene length/Mb | GC含量 GC Content/% | 编码基因 Cds | rRNA | tRNA | 年份 Year | 来源 Source | 来源地 Source location |
---|---|---|---|---|---|---|---|---|
J-1 | 5.00 | 60.9 | 4 268 | 31 | 110 | 1989 | 病鲤鱼Diseased Carp | 中国南京Nanjing, China |
AL09_71 | 5.02 | 60.8 | 4 297 | 31 | 111 | 2009 | 斑点叉尾鮰Channel catfish | 美国USA |
AH10 | 4.91 | 61.1 | 4 327 | 33 | 128 | 2012 | 病草鱼Diseased Ctenopharyngodon idella | 中国上海Shanghai, China |
ATCC_7966 | 4.74 | 61.5 | 4 119 | 31 | 127 | 不详 | 牛奶Milk | 美国USA |
XDMG | 4.99 | 60.8 | 4 935 | 3 | 99 | 2009 | 病麦穗鱼Diseased Pseudorasbora parva | 中国新乡Xinxiang, China |
长度 Length/kb | 数量 Count |
---|---|
0-5 | 1 |
5-10 | 2 |
10-15 | 5 |
15-20 | 2 |
20-25 | 3 |
25-30 | 1 |
Table 3 Distribution of genomic island lengths in A. hyd-rophila XDMG
长度 Length/kb | 数量 Count |
---|---|
0-5 | 1 |
5-10 | 2 |
10-15 | 5 |
15-20 | 2 |
20-25 | 3 |
25-30 | 1 |
毒力因子一级分类 First-level classification of virulence factors | 毒力因子二级分类 Second-level classification of virulence factors | 基因数量 Number of genes |
---|---|---|
防御性毒力因子 Defensive virulence factors | 抗吞噬作用 Antiphagocytosis | 23 |
相位转换 Phase variation | 1 | |
应激蛋白 Stress protein | 8 | |
细胞代谢 Cellular metabolism | 2 | |
攻击性毒力因子 Offensive virulence factors | 依从性 Adherence | 109 |
分泌系统 Secretion system | 26 | |
毒素 Toxin | 7 | |
侵袭 Invasion | 16 | |
非特异性毒力因子Nonspecific virulence factor | 铁摄取系统 Iron uptake system | 54 |
毒力相关基因的调节 Regulation of virulence-associated genes | 规定 Regulation | 10 |
Table 4 Classification of virulence genes in A. hydrophila XDMG
毒力因子一级分类 First-level classification of virulence factors | 毒力因子二级分类 Second-level classification of virulence factors | 基因数量 Number of genes |
---|---|---|
防御性毒力因子 Defensive virulence factors | 抗吞噬作用 Antiphagocytosis | 23 |
相位转换 Phase variation | 1 | |
应激蛋白 Stress protein | 8 | |
细胞代谢 Cellular metabolism | 2 | |
攻击性毒力因子 Offensive virulence factors | 依从性 Adherence | 109 |
分泌系统 Secretion system | 26 | |
毒素 Toxin | 7 | |
侵袭 Invasion | 16 | |
非特异性毒力因子Nonspecific virulence factor | 铁摄取系统 Iron uptake system | 54 |
毒力相关基因的调节 Regulation of virulence-associated genes | 规定 Regulation | 10 |
耐药基因分类Resistance gene classification | 耐药基因数量Number of resistance genes |
---|---|
抗生素耐药性外排泵 Efflux pump conferring antibiotic resistance | 179 |
基因调控抗生素外排 Gene modulating antibiotic efflux | 68 |
抗生素耐药基因变异或突变 Antibiotic resistant gene variant or mutant | 32 |
通过分子旁路传递抗生素耐药性的基因 Gene conferring antibiotic resistance via molecular bypass | 22 |
抗生素耐药基因簇、盒或操纵子 Antibiotic resistance gene cluster, cassette, or operon | 18 |
糖肽类耐药基因 Glycopeptide resistance gene | 18 |
抗生素灭活酶 Antibiotic inactivation enzyme | 16 |
β-内酰胺耐药基因 Beta-lactam resistance gene | 16 |
多黏菌素耐药基因 Polymyxin resistance gene | 14 |
基因改变细胞壁电荷导致抗生素耐药性 Gene altering cell wall charge conferring antibiotic resistance | 12 |
四环素耐药基因 Tetracycline resistance gene | 9 |
氨基糖苷类耐药基因 Aminoglycoside resistance gene | 9 |
抗生素靶标保护蛋白 Antibiotic target protection protein | 8 |
氟喹诺酮耐药基因 Fluoroquinolone resistance gene | 7 |
基因调节β-内酰胺耐药 Gene modulating beta-lactam resistance | 6 |
抗生素靶标修饰酶 Antibiotic target modifying enzyme | 4 |
氨基香豆素耐药基因 Aminocoumarin resistance gene | 4 |
异烟肼耐药基因 Isoniazid resistance gene | 4 |
抗生素靶向替代蛋白 Antibiotic target replacement protein | 3 |
埃法霉素耐药基因 Elfamycin resistance gene | 3 |
抗链阳菌素基因 Streptogramin resistance gene | 3 |
肽类抗生素耐药基因 Peptide antibiotic resistance gene | 3 |
脂肽类抗生素耐药基因 Lipopeptide antibiotic resistance gene | 3 |
磷霉素耐药基因 Fosfomycin resistance gene | 3 |
磺胺类耐药基因 Sulfonamide resistance gene | 2 |
甲氧苄啶耐药基因 Trimethoprim resistance gene | 2 |
氯霉素耐药基因 Chloramphenicol resistance gene | 2 |
调节抗生素渗透性的基因 Gene modulating permeability to antibiotic | 2 |
利福平耐药基因 Rifampin resistance gene | 2 |
酚类耐药性基因 Phenicol resistance gene | 1 |
大环内酯类耐药性基因 Macrolide resistance gene | 1 |
利奈唑胺耐药基因 Linezolid resistance gene | 1 |
林可酰胺耐药基因 Lincosamide resistance gene | 1 |
呋喃妥因耐药基因 Nitrofuratoin resistance gene | 1 |
参与抗生素自身耐药的基因 Gene involved in self resistance to antibiotic | 1 |
Table 5 Classification of resistance genes in A. hydrophila XDMG
耐药基因分类Resistance gene classification | 耐药基因数量Number of resistance genes |
---|---|
抗生素耐药性外排泵 Efflux pump conferring antibiotic resistance | 179 |
基因调控抗生素外排 Gene modulating antibiotic efflux | 68 |
抗生素耐药基因变异或突变 Antibiotic resistant gene variant or mutant | 32 |
通过分子旁路传递抗生素耐药性的基因 Gene conferring antibiotic resistance via molecular bypass | 22 |
抗生素耐药基因簇、盒或操纵子 Antibiotic resistance gene cluster, cassette, or operon | 18 |
糖肽类耐药基因 Glycopeptide resistance gene | 18 |
抗生素灭活酶 Antibiotic inactivation enzyme | 16 |
β-内酰胺耐药基因 Beta-lactam resistance gene | 16 |
多黏菌素耐药基因 Polymyxin resistance gene | 14 |
基因改变细胞壁电荷导致抗生素耐药性 Gene altering cell wall charge conferring antibiotic resistance | 12 |
四环素耐药基因 Tetracycline resistance gene | 9 |
氨基糖苷类耐药基因 Aminoglycoside resistance gene | 9 |
抗生素靶标保护蛋白 Antibiotic target protection protein | 8 |
氟喹诺酮耐药基因 Fluoroquinolone resistance gene | 7 |
基因调节β-内酰胺耐药 Gene modulating beta-lactam resistance | 6 |
抗生素靶标修饰酶 Antibiotic target modifying enzyme | 4 |
氨基香豆素耐药基因 Aminocoumarin resistance gene | 4 |
异烟肼耐药基因 Isoniazid resistance gene | 4 |
抗生素靶向替代蛋白 Antibiotic target replacement protein | 3 |
埃法霉素耐药基因 Elfamycin resistance gene | 3 |
抗链阳菌素基因 Streptogramin resistance gene | 3 |
肽类抗生素耐药基因 Peptide antibiotic resistance gene | 3 |
脂肽类抗生素耐药基因 Lipopeptide antibiotic resistance gene | 3 |
磷霉素耐药基因 Fosfomycin resistance gene | 3 |
磺胺类耐药基因 Sulfonamide resistance gene | 2 |
甲氧苄啶耐药基因 Trimethoprim resistance gene | 2 |
氯霉素耐药基因 Chloramphenicol resistance gene | 2 |
调节抗生素渗透性的基因 Gene modulating permeability to antibiotic | 2 |
利福平耐药基因 Rifampin resistance gene | 2 |
酚类耐药性基因 Phenicol resistance gene | 1 |
大环内酯类耐药性基因 Macrolide resistance gene | 1 |
利奈唑胺耐药基因 Linezolid resistance gene | 1 |
林可酰胺耐药基因 Lincosamide resistance gene | 1 |
呋喃妥因耐药基因 Nitrofuratoin resistance gene | 1 |
参与抗生素自身耐药的基因 Gene involved in self resistance to antibiotic | 1 |
毒力功能 Virulence function | 菌株 Strain | |||||
---|---|---|---|---|---|---|
J-1 | AL09_71 | AH10 | ATCC_7966 | XDMG | ||
分泌系统 Secretion system | II型分泌系统 T2SS | + | + | + | + | + |
III型分泌系统 T3SS | + | - | - | - | - | |
Ⅵ型分泌系统 T6SS | + | - | + | + | + | |
运动和黏附 Motility and adhesion | 极性鞭毛 Polar flagellumb | + | + | + | + | + |
侧鞭毛 Lateral flagella | - | - | - | - | - | |
I型菌毛基因 Type I pilus | + | + | + | + | + | |
IV型菌毛基因 Type IV pilus | + | + | + | + | + | |
毒素 Toxin | 细胞兴奋性肠毒素基因 Cytotonic enterotoxin gene,Alt | + | + | + | + | + |
细胞毒素基因 Heat-stable cytotonic enterotoxin, Ast | + | + | + | + | + | |
气溶素 Aerolysin, Aer | + | + | + | + | + | |
溶血素 Hemolysin, HlyA | + | + | + | + | + | |
溶血素III Hemolysin III | + | + | + | + | + | |
耐热性的溶血素 Thermostable hemolysin | + | + | + | + | + | |
RTX毒素 Rtx toxin | + | + | + | + | + | |
分泌酶 Enzyme | 甘油磷脂胆固醇酰基转移酶 Glycerophospholipid cholesterol acyltransferase | + | + | + | + | + |
DNA腺嘌呤甲基转移酶 DNA adenine methyltransferase, Dam | + | + | + | + | + | |
弹性蛋白酶 Elastase, AhpB | + | + | + | + | + | |
烯醇酶 Enolase, Eno | + | + | + | + | + | |
细胞外蛋白酶 Extracellular protease, EprA1 | + | + | + | + | + | |
葡萄糖抑制分裂蛋白A Glucose-inhibited division protein A, GidA | + | + | + | + | + | |
磷脂酶C Phospholipase C, PLC | + | + | + | + | + | |
核糖核酸酶R Exoribonuclease R, VacB | + | + | + | + | + | |
丝氨酸蛋白酶 Serine protease, SerA | + | + | + | + | + | |
UDP-半乳糖-4-差向异构酶 UDP-galactose-4-epimerase, GalE | + | + | + | + | + | |
UDP葡萄糖焦磷酸化酶 UDP-glucose pyrophosphorylase, GalU | + | + | + | + | + | |
铁获取 Iron acquisition | 铁铬铁摄取 Ferrichrome iron uptake | + | + | + | + | + |
铁摄取调节器 Ferric uptake regulator, Fur | + | + | + | + | + | |
血红素摄取 Haeme uptake | + | + | + | + | + | |
假定血红素受体 Putative haeme receptor | + | + | + | + | + | |
抗生素耐药性 Antibiotic resistance | β-内酰胺耐药 Beta-lactam resistance, Amp | + | + | + | + | + |
多药耐药蛋白B Multidrug resistance proteinB, DsbA | + | + | + | + | + | |
多黏菌素B耐药 Polymyxin B resistance, ArnA | + | + | + | + | + | |
磷霉素耐药蛋白 Fosmidomycin resistance protein | + | + | + | + | + | |
耐有机过氧化氢性 Organic hydroperoxide resistance | + | + | + | + | + | |
肽类抗生素耐药性 Peptide antibiotic resistance | + | + | + | + | + |
Table 6 Distribution of virulence genes in 5 strains of A. hydrophila
毒力功能 Virulence function | 菌株 Strain | |||||
---|---|---|---|---|---|---|
J-1 | AL09_71 | AH10 | ATCC_7966 | XDMG | ||
分泌系统 Secretion system | II型分泌系统 T2SS | + | + | + | + | + |
III型分泌系统 T3SS | + | - | - | - | - | |
Ⅵ型分泌系统 T6SS | + | - | + | + | + | |
运动和黏附 Motility and adhesion | 极性鞭毛 Polar flagellumb | + | + | + | + | + |
侧鞭毛 Lateral flagella | - | - | - | - | - | |
I型菌毛基因 Type I pilus | + | + | + | + | + | |
IV型菌毛基因 Type IV pilus | + | + | + | + | + | |
毒素 Toxin | 细胞兴奋性肠毒素基因 Cytotonic enterotoxin gene,Alt | + | + | + | + | + |
细胞毒素基因 Heat-stable cytotonic enterotoxin, Ast | + | + | + | + | + | |
气溶素 Aerolysin, Aer | + | + | + | + | + | |
溶血素 Hemolysin, HlyA | + | + | + | + | + | |
溶血素III Hemolysin III | + | + | + | + | + | |
耐热性的溶血素 Thermostable hemolysin | + | + | + | + | + | |
RTX毒素 Rtx toxin | + | + | + | + | + | |
分泌酶 Enzyme | 甘油磷脂胆固醇酰基转移酶 Glycerophospholipid cholesterol acyltransferase | + | + | + | + | + |
DNA腺嘌呤甲基转移酶 DNA adenine methyltransferase, Dam | + | + | + | + | + | |
弹性蛋白酶 Elastase, AhpB | + | + | + | + | + | |
烯醇酶 Enolase, Eno | + | + | + | + | + | |
细胞外蛋白酶 Extracellular protease, EprA1 | + | + | + | + | + | |
葡萄糖抑制分裂蛋白A Glucose-inhibited division protein A, GidA | + | + | + | + | + | |
磷脂酶C Phospholipase C, PLC | + | + | + | + | + | |
核糖核酸酶R Exoribonuclease R, VacB | + | + | + | + | + | |
丝氨酸蛋白酶 Serine protease, SerA | + | + | + | + | + | |
UDP-半乳糖-4-差向异构酶 UDP-galactose-4-epimerase, GalE | + | + | + | + | + | |
UDP葡萄糖焦磷酸化酶 UDP-glucose pyrophosphorylase, GalU | + | + | + | + | + | |
铁获取 Iron acquisition | 铁铬铁摄取 Ferrichrome iron uptake | + | + | + | + | + |
铁摄取调节器 Ferric uptake regulator, Fur | + | + | + | + | + | |
血红素摄取 Haeme uptake | + | + | + | + | + | |
假定血红素受体 Putative haeme receptor | + | + | + | + | + | |
抗生素耐药性 Antibiotic resistance | β-内酰胺耐药 Beta-lactam resistance, Amp | + | + | + | + | + |
多药耐药蛋白B Multidrug resistance proteinB, DsbA | + | + | + | + | + | |
多黏菌素B耐药 Polymyxin B resistance, ArnA | + | + | + | + | + | |
磷霉素耐药蛋白 Fosmidomycin resistance protein | + | + | + | + | + | |
耐有机过氧化氢性 Organic hydroperoxide resistance | + | + | + | + | + | |
肽类抗生素耐药性 Peptide antibiotic resistance | + | + | + | + | + |
菌株Strain | Hly | Aer | Ast | Alt | AhyI | AhyR |
---|---|---|---|---|---|---|
J-1 | 100 | 99.93 | 100 | 100 | 100 | 99.27 |
AL09_71 | 100 | 100 | 100 | 100 | 100 | 100 |
AH10 | 98.26 | 97.76 | 97.33 | 98.02 | 98.56 | 99.85 |
ATCC_7966 | 98.48 | 96.57 | 97.59 | 97.6 | 98.88 | 99.28 |
Table 7 Homology of virulence gene sequence of each stra-in using A. hydrophila XDMG as a reference strain/%
菌株Strain | Hly | Aer | Ast | Alt | AhyI | AhyR |
---|---|---|---|---|---|---|
J-1 | 100 | 99.93 | 100 | 100 | 100 | 99.27 |
AL09_71 | 100 | 100 | 100 | 100 | 100 | 100 |
AH10 | 98.26 | 97.76 | 97.33 | 98.02 | 98.56 | 99.85 |
ATCC_7966 | 98.48 | 96.57 | 97.59 | 97.6 | 98.88 | 99.28 |
菌株Strain | Hly | Aer | Ast | Alt | AhyI | AhyR |
---|---|---|---|---|---|---|
J-1 | 100 | 99.8 | 100 | 100 | 100 | * |
AL09_71 | 100 | 100 | 100 | 100 | 100 | 100 |
AH10 | 100 | 99.19 | 97.33 | 99.37 | 100 | 100 |
ATCC_7966 | 100 | 99.19 | 99.21 | 99.24 | 100 | 99.13 |
Table 8 Conservation of amino acid sequences encoded by virulence genes of each strain using A. hydrophila XDMG as a reference strain/%
菌株Strain | Hly | Aer | Ast | Alt | AhyI | AhyR |
---|---|---|---|---|---|---|
J-1 | 100 | 99.8 | 100 | 100 | 100 | * |
AL09_71 | 100 | 100 | 100 | 100 | 100 | 100 |
AH10 | 100 | 99.19 | 97.33 | 99.37 | 100 | 100 |
ATCC_7966 | 100 | 99.19 | 99.21 | 99.24 | 100 | 99.13 |
菌株 Strain | OmpA gene 2333 | OmpA gene 2864 | OmpA gene 3980 | OmpAIgene 2059 | OmpAIgene 2862 | OmpAIIgene 2863 | OmpC gene4897 | OmpK gene3024 | OmpN gene0081 | OmpU gene2094 | OmpW gene4572 | Omp26La gene3292 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
J-1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99.63 | 100 | 100 | 100 |
AL09_71 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
AH10 | 98.49 | 97.92 | 98.74 | - | 94.49 | 98.5 | 99.08 | 99.53 | 99.26 | 97.86 | 98.86 | - |
ATCC_7966 | 98.58 | 97.82 | 98.83 | - | 94.78 | 98.80 | - | 99.41 | 99.35 | 97.95 | 98.37 | 96.31 |
Table 9 Homology of outer membrane protein gene sequences of each strain using A. hydrophila XDMG as a reference strain/%
菌株 Strain | OmpA gene 2333 | OmpA gene 2864 | OmpA gene 3980 | OmpAIgene 2059 | OmpAIgene 2862 | OmpAIIgene 2863 | OmpC gene4897 | OmpK gene3024 | OmpN gene0081 | OmpU gene2094 | OmpW gene4572 | Omp26La gene3292 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
J-1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99.63 | 100 | 100 | 100 |
AL09_71 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
AH10 | 98.49 | 97.92 | 98.74 | - | 94.49 | 98.5 | 99.08 | 99.53 | 99.26 | 97.86 | 98.86 | - |
ATCC_7966 | 98.58 | 97.82 | 98.83 | - | 94.78 | 98.80 | - | 99.41 | 99.35 | 97.95 | 98.37 | 96.31 |
菌株 Strain | OmpA gene 2333 | OmpA gene 2864 | OmpA gene 3980 | OmpAIgene 2059 | OmpAI gene 2862 | OmpAII gene 2863 | OmpC gene4897 | OmpK gene3024 | OmpN gene0081 | OmpU gene2094 | OmpW gene4572 | Omp26La gene3292 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
J-1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | * | 100 | 100 | 100 |
AL09_71 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
AH10 | 100 | 99.15 | 99.73 | - | 95.06 | 100 | 99.86 | 100 | 99.44 | 98.6 | 100 | - |
ATCC_7966 | 99.15 | 99.43 | 99.18 | - | 95.06 | 99.70 | - | 100 | 99.44 | 99.44 | 100 | 94.78 |
Table 10 Conservation of amino acid sequence encoded by outer membrane protein gene of each strain using A. hydrophila XDMG as a reference strain/%
菌株 Strain | OmpA gene 2333 | OmpA gene 2864 | OmpA gene 3980 | OmpAIgene 2059 | OmpAI gene 2862 | OmpAII gene 2863 | OmpC gene4897 | OmpK gene3024 | OmpN gene0081 | OmpU gene2094 | OmpW gene4572 | Omp26La gene3292 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
J-1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | * | 100 | 100 | 100 |
AL09_71 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
AH10 | 100 | 99.15 | 99.73 | - | 95.06 | 100 | 99.86 | 100 | 99.44 | 98.6 | 100 | - |
ATCC_7966 | 99.15 | 99.43 | 99.18 | - | 95.06 | 99.70 | - | 100 | 99.44 | 99.44 | 100 | 94.78 |
菌株Strain | RmlA | RmlB | RmLC | RmlD |
---|---|---|---|---|
J-1 | 61.59 | 87.33 | 50.54 | 50.33 |
AL09_71 | 100 | 100 | 100 | 100 |
AH10 | 60.41 | 84.89 | 51.18 | 46.87 |
ATCC_7966 | 59.77 | 87.88 | 50.71 | 50.88 |
Table 11 Homology of the same gene sequences of O-antigen gene cluster in each strain using XDMG of A. hydrophila as a reference strain/%
菌株Strain | RmlA | RmlB | RmLC | RmlD |
---|---|---|---|---|
J-1 | 61.59 | 87.33 | 50.54 | 50.33 |
AL09_71 | 100 | 100 | 100 | 100 |
AH10 | 60.41 | 84.89 | 51.18 | 46.87 |
ATCC_7966 | 59.77 | 87.88 | 50.71 | 50.88 |
菌株Strain | RmlA | RmlB | RmLC | RmlD |
---|---|---|---|---|
J-1 | 64.04 | 91.71 | 43.24 | 40.00 |
AL09_71 | 100 | 100 | 100 | 100 |
AH10 | 64.38 | 89.57 | 42.08 | 40.00 |
ATCC_7966 | 62.93 | 91.71 | 41.18 | 40.00 |
Table 12 Conservation of amino acid sequences encoded by the same gene of O-antigen gene cluster of each strain using A. hydrophila XDMG as the reference strain/%
菌株Strain | RmlA | RmlB | RmLC | RmlD |
---|---|---|---|---|
J-1 | 64.04 | 91.71 | 43.24 | 40.00 |
AL09_71 | 100 | 100 | 100 | 100 |
AH10 | 64.38 | 89.57 | 42.08 | 40.00 |
ATCC_7966 | 62.93 | 91.71 | 41.18 | 40.00 |
[1] |
Awan F, Dong YH, Wang NN, et al. The fight for invincibility: environmental stress response mechanisms and Aeromonas hydrophila[J]. Microb Pathog, 2018, 116: 135-145.
doi: 10.1016/j.micpath.2018.01.023 URL |
[2] |
Park SM, Kim HW, Choi C, et al. Pathogenicity and seasonal variation of Aeromonas hydrophila isolated from seafood and ready-to-eat sushi in South Korea[J]. Food Res Int, 2021, 147: 110484.
doi: 10.1016/j.foodres.2021.110484 URL |
[3] |
Dong J, Zhang LS, Liu YT, et al. Luteolin decreases the pathogenicity of Aeromonas hydrophila via inhibiting the activity of aerolysin[J]. Virulence, 2021, 12(1): 165-176.
doi: 10.1080/21505594.2020.1867455 URL |
[4] |
Parker JL, Shaw JG. Aeromonas spp. clinical microbiology and disease[J]. J Infect, 2011, 62(2): 109-118.
doi: 10.1016/j.jinf.2010.12.003 URL |
[5] |
Sharpless M, Sharma R. Aeromonas hydrophila endogenous endophthalmitis in a patient with underlying adenocarcinoma of the colon[J]. BMJ Case Rep, 2021, 14(4): e241317.
doi: 10.1136/bcr-2020-241317 URL |
[6] |
Zhou J, Zhao H, Zhang L, et al. MiRNA-seq analysis of spleen and head kidney tissue from aquacultured largemouth bass(Micropterus salmoides)in response to Aeromonas hydrophila infection[J]. Funct Integr Genomics, 2021, 21(1): 101-111.
doi: 10.1007/s10142-020-00763-8 |
[7] |
Zhang XJ, Yang WM, Wu H. et al. Multilocus sequence typing revealed a clonal lineage of Aeromonas hydrophila caused motile Aeromonas septicemia outbreaks in pond-cultured cyprinid fish in an epidemic area in central China[J]. Aquaculture, 2014, 432: 1-6.
doi: 10.1016/j.aquaculture.2014.04.017 URL |
[8] | 贺文旭, 毛会丽, 杨利敏, 等. 豫北地区主要淡水鱼类感染嗜水气单胞菌的流行病学调查[J]. 水产科学, 2016, 35(3): 278-283. |
He WX, Mao HL, Yang LM, et al. Epidemiological investigation of Aeromonas hydrophila infection isolated in major fresh-water fishes from northern regions in Henan, China[J]. Fish Sci, 2016, 35(3): 278-283. | |
[9] | 关建义, 刘涌涛, 毛会丽, 等. 一种嗜水气单胞菌及维氏气单胞菌二联灭活疫苗及制备方法: CN105031636B[P]. 2018-06-19. |
Guan JY, Liu YT, Mao HL, et al. Bi-combined inactivate vaccine of Aeromonas hydrophila and Aeromonas veronii and preparation method thereof: CN105031636B[P]. 2018-06-19. | |
[10] | 储卫华, 陆承平. 嗜水气单胞菌J-1株丝氨酸蛋白酶基因克隆与序列分析[J]. 水产学报, 2004, 28(1): 84-88. |
Chu WH, Lu CP. Cloning and sequence analysis of an extracellular serine-protease gene of Aeromonas hydrophila J-1[J]. J Fish China, 2004, 28(1): 84-88. | |
[11] | Pridgeon JW, Zhang DH, Zhang LE. Complete genome sequence of the highly virulent Aeromonas hydrophila AL09-71 isolated from diseased channel catfish in west Alabama[J]. Genome Announc, 2014, 2(3): e00450-e00414. |
[12] | 张国亮, 王浩, 张也, 等. 嗜水气单胞菌AH10(CCTCC AB2014155)的全基因组测序及比较分析[J]. 中国水产科学, 2016, 23(5): 995-1005. |
Zhang GL, Wang H, Zhang Y, et al. Whole genome sequencing and comparative analysis of Aeromonas hydrophila AH10(CCTCC AB2014155)[J]. Chinese Aquatic Science, 2016, 23(5): 995-1005. | |
[13] |
Seshadri R, Joseph SW, Chopra AK, et al. Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades[J]. J Bacteriol, 2006, 188(23): 8272-8282.
pmid: 16980456 |
[14] |
Nederbragt AJ. On the middle ground between open source and commercial software - the case of the Newbler program[J]. Genome Biol, 2014, 15(4): 113.
pmid: 25180324 |
[15] |
Swindell SR, Plasterer TN. SEQMAN. contig assembly[J]. Methods Mol Biol, 1997, 70: 75-89.
pmid: 9089604 |
[16] |
Delcher AL, Bratke KA, Powers EC, et al. Identifying bacterial genes and endosymbiont DNA with Glimmer[J]. Bioinformatics, 2007, 23(6): 673-679.
doi: 10.1093/bioinformatics/btm009 pmid: 17237039 |
[17] |
Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000[J]. Nucleic Acids Res, 2000, 28(1): 45-48.
doi: 10.1093/nar/28.1.45 pmid: 10592178 |
[18] | Finn RD, Bateman A, Clements J, et al. Pfam: the protein families database[J]. Nucleic Acids Res, 2014, 42(Database issue): D222-D230. |
[19] |
Ogata H, Goto S, Sato K, et al. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res, 1999, 27(1): 29-34.
doi: 10.1093/nar/27.1.29 pmid: 9847135 |
[20] |
Lombard V, Golaconda Ramulu H, Drula E, et al. The carbohydrate-active enzymes database(CAZy)in 2013[J]. Nucleic Acids Res, 2014, 42(D1): D490-D495.
doi: 10.1093/nar/gkt1178 URL |
[21] |
Chen LH, Zheng DD, Liu B, et al. VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on[J]. Nucleic Acids Res, 2016, 44(D1): D694-D697.
doi: 10.1093/nar/gkv1239 URL |
[22] |
Jia BF, Raphenya AR, Alcock B, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database[J]. Nucleic Acids Res, 2017, 45(D1): D566-D573.
doi: 10.1093/nar/gkw1004 URL |
[23] |
Urban M, Cuzick A, Rutherford K, et al. PHI-base: a new interface and further additions for the multi-species pathogen-host interactions database[J]. Nucleic Acids Res, 2017, 45(D1): D604-D610.
doi: 10.1093/nar/gkw1089 URL |
[24] | Jensen LJ, Julien P, Kuhn M, et al. eggNOG: automated construction and annotation of orthologous groups of genes[J]. Nucleic Acids Res, 2008, 36(Database issue): D250-D254. |
[25] |
Saier MH Jr, Reddy VS, Tsu BV, et al. The Transporter Classification Database(TCDB): recent advances[J]. Nucleic Acids Res, 2016, 44(D1): D372-D379.
doi: 10.1093/nar/gkv1103 URL |
[26] | Saier MH Jr, Tran CV, Barabote RD. TCDB: the Transporter Classification Database for membrane transport protein analyses and information[J]. Nucleic Acids Res, 2006, 34(Database issue): D181-D186. |
[27] |
Krogh A, Larsson B, von Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes[J]. J Mol Biol, 2001, 305(3): 567-580.
doi: 10.1006/jmbi.2000.4315 pmid: 11152613 |
[28] |
Chan PP, Lowe TM. tRNAscan-SE: searching for tRNA genes in genomic sequences[J]. Methods Mol Biol, 2019, 1962: 1-14.
doi: 10.1007/978-1-4939-9173-0_1 pmid: 31020551 |
[29] |
Benson G. Tandem repeats finder: a program to analyze DNA sequences[J]. Nucleic Acids Res, 1999, 27(2): 573-580.
doi: 10.1093/nar/27.2.573 pmid: 9862982 |
[30] |
Bertelli C, Laird MR, Williams KP, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets[J]. Nucleic Acids Res, 2017, 45(W1): W30-W35.
doi: 10.1093/nar/gkx343 URL |
[31] |
Bland C, Ramsey TL, Sabree F, et al. CRISPR recognition tool(CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats[J]. BMC Bioinformatics, 2007, 8: 209.
doi: 10.1186/1471-2105-8-209 |
[32] | 孙静, 万晓媛, 杨倩, 等. 病例研究:未知病因的凡纳滨对虾溞状幼体的病原和微生物组分析[J]. 渔业科学进展, 2019, 40(5): 134-144. |
Sun J, Wan XY, Yang Q, et al. Case studies: pathogenic agent and microbiome analysis for zoea of litopenaeus vannamei suffering from an unknown disease[J]. Prog Fish Sci, 2019, 40(5): 134-144. | |
[33] |
Yu ZH, Geng Y, Wang KY, et al. Complete genome sequence of Vibrio mimicus strain SCCF01 with potential application in fish vaccine development[J]. Virulence, 2017, 8(6): 1028-1030.
doi: 10.1080/21505594.2016.1250996 URL |
[34] |
Chen F, Liu XF, Hu NW, et al. Aeromonas hydrophila Ssp1: a secretory serine protease that disrupts tight junction integrity and is essential for host infection[J]. Fish Shellfish Immunol, 2022, 127: 530-541.
doi: 10.1016/j.fsi.2022.06.068 URL |
[35] |
Tseng TT, Tyler BM, Setubal JC. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology[J]. BMC Microbiol, 2009, 9(S 1): 1-9.
doi: 10.1186/1471-2180-9-1 |
[36] |
Rasmussen-Ivey CR, Figueras MJ, McGarey D, et al. Virulence factors of Aeromonas hydrophila: in the wake of reclassification[J]. Front Microbiol, 2016, 7: 1337.
doi: 10.3389/fmicb.2016.01337 pmid: 27610107 |
[37] |
Vilches S, Urgell C, Merino S, et al. Complete type III secretion system of a mesophilic Aeromonas hydrophila strain[J]. Appl Environ Microbiol, 2004, 70(11): 6914-6919.
doi: 10.1128/AEM.70.11.6914-6919.2004 URL |
[38] |
Barger PC, Liles MR, Newton JC. Type II secretion is essential for virulence of the emerging fish pathogen, hypervirulent Aeromonas hydrophila[J]. Front Vet Sci, 2020, 7: 574113.
doi: 10.3389/fvets.2020.574113 URL |
[39] |
Jin L, Chen Y, Yang WG, et al. Complete genome sequence of fish-pathogenic Aeromonas hydrophila HX-3 and a comparative analysis: insights into virulence factors and quorum sensing[J]. Sci Rep, 2020, 10: 15479.
doi: 10.1038/s41598-020-72484-8 |
[40] |
Pissaridou P, Allsopp LP, Wettstadt S, et al. The Pseudomonas aeruginosa T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA damage to bacterial competitors[J]. Proc Natl Acad Sci USA, 2018, 115(49): 12519-12524.
doi: 10.1073/pnas.1814181115 pmid: 30455305 |
[41] | Khajanchi BK, Kozlova EV, Sha J, et al. The two-component QseBC signalling system regulates in vitro and in vivo virulence of Aeromonas hydrophila[J]. Microbiology(Reading), 2012, 158(Pt 1): 259-271. |
[42] | Abisado RG, Benomar S, Klaus JR, et al. Bacterial quorum sensing and microbial community interactions[J]. mBio, 2018, 9(3): e02331-e02317. |
[43] |
Sun B, Luo HZ, Jiang H, et al. Inhibition of quorum sensing and biofilm formation of esculetin on Aeromonas hydrophila[J]. Front Microbiol, 2021, 12: 737626.
doi: 10.3389/fmicb.2021.737626 URL |
[44] |
Swift S, Lynch MJ, Fish L, et al. Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonas hydrophila[J]. Infect Immun, 1999, 67(10): 5192-5199.
doi: 10.1128/IAI.67.10.5192-5199.1999 pmid: 10496895 |
[45] |
Merino S, Rubires X, Aguilar A, et al. The role of flagella and motility in the adherence and invasion to fish cell lines by Aeromonas hydrophila serogroup O: 34 strains[J]. FEMS Microbiol Lett, 1997, 151(2): 213-217.
pmid: 9228756 |
[46] |
Saleh A, Elkenany R, Younis G. Virulent and multiple antimicrobial resistance Aeromonas hydrophila isolated from diseased Nile Tilapia fish(Oreochromis niloticus)in Egypt with sequencing of some virulence-associated genes[J]. Biocontrol Sci, 2021, 26(3): 167-176.
doi: 10.4265/bio.26.167 URL |
[47] |
Zhao XL, Wu G, Chen H, et al. Analysis of virulence and immunogenic factors in Aeromonas hydrophila: towards the development of live vaccines[J]. J Fish Dis, 2020, 43(7): 747-755.
doi: 10.1111/jfd.v43.7 URL |
[48] |
El-Bahar HM, Ali NG, Aboyadak IM, et al. Virulence genes contributing to Aeromonas hydrophila pathogenicity in Oreochromis niloticus[J]. Int Microbiol, 2019, 22(4): 479-490.
doi: 10.1007/s10123-019-00075-3 pmid: 30989358 |
[49] |
Lange MD, Abernathy J, Shoemaker CA, et al. Proteome analysis of virulent Aeromonas hydrophila reveals the upregulation of iron acquisition systems in the presence of a xenosiderophore[J]. FEMS Microbiol Lett, 2020, 367(20): fnaa169.
doi: 10.1093/femsle/fnaa169 URL |
[50] |
Teng T, Xi BW, Chen K, et al. Comparative transcriptomic and proteomic analyses reveal upregulated expression of virulence and iron transport factors of Aeromonas hydrophila under iron limitation[J]. BMC Microbiol, 2018, 18(1): 52.
doi: 10.1186/s12866-018-1178-8 pmid: 29866030 |
[51] |
Zhu W, Zhou S, Chu W. Comparative proteomic analysis of sensitive and multi-drug resistant Aeromonas hydrophila isolated from diseased fish[J]. Microb Pathog, 2020, 139: 103930.
doi: 10.1016/j.micpath.2019.103930 URL |
[52] | Roges EM, Gonçalves VD, Cardoso MD, et al. Virulence-associated genes and antimicrobial resistance of Aeromonas hydrophila isolates from animal, food, and human sources in Brazil[J]. Biomed Res Int, 2020, 2020: 1052607. |
[53] |
Xu GY, Tang XP, Shang XY, et al. Identification of immunogenic outer membrane proteins and evaluation of their protective efficacy against Stenotrophomonas maltophilia[J]. BMC Infect Dis, 2018, 18(1): 347.
doi: 10.1186/s12879-018-3258-7 |
[54] | Rekha MK, Biswajit M, Malathi S, et al. Recombinant Aeromonas hydrophila outer membrane protein 48(Omp48)induces a protective immune response against Aeromonas hydrophila and Edwardsiella tarda[J]. Res Microbiol, 2012, 163(4): 286-291. |
[55] |
Yadav SK, Meena JK, Sharma M, et al. Recombinant outer membrane protein C of Aeromonas hydrophila elicits mixed immune response and generates agglutinating antibodies[J]. Immunol Res, 2016, 64(4): 1087-1099.
doi: 10.1007/s12026-016-8807-9 URL |
[56] |
Yadav SK, Dash P, Sahoo PK, et al. Recombinant outer membrane protein OmpC induces protective immunity against Aeromonas hydrophila infection in Labeo rohita[J]. Microb Pathog, 2021, 150: 104727.
doi: 10.1016/j.micpath.2020.104727 URL |
[57] |
He L, Wu L, Tang Y, et al. Immunization of a novel outer membrane protein from Aeromonas hydrophila simultaneously resisting A. hydrophila and Edwardsiella anguillarum infection in European eels(Angullia angullia)[J]. Fish Shellfish Immunol, 2020, 97: 300-312.
doi: 10.1016/j.fsi.2019.12.060 URL |
[58] |
Yadav SK, Dash P, Sahoo PK, et al. Modulation of immune response and protective efficacy of recombinant outer-membrane protein F(rOmpF)of Aeromonas hydrophila in Labeo rohita[J]. Fish Shellfish Immunol, 2018, 80: 563-572.
doi: 10.1016/j.fsi.2018.06.041 URL |
[59] |
Heiss C, Wang Z, Thurlow CM, et al. Structure of the capsule and lipopolysaccharide O-antigen from the channel catfish pathogen, Aeromonas hydrophila[J]. Carbohydr Res, 2019, 486: 107858.
doi: 10.1016/j.carres.2019.107858 URL |
[60] |
Cao HC, Wang M, Wang Q, et al. Identifying genetic diversity of O antigens in Aeromonas hydrophila for molecular serotype detection[J]. PLoS One, 2018, 13(9): e0203445.
doi: 10.1371/journal.pone.0203445 URL |
[61] |
Dworaczek K, Kurzylewska M, Karaś MA, et al. A unique sugar l-perosamine(4-amino-4, 6-dideoxy-l-mannose)is a compound building two O-chain polysaccharides in the lipopolysaccharide of Aeromonas hydrophila strain JCM 3968, serogroup O6[J]. Mar Drugs, 2019, 17(5): 254.
doi: 10.3390/md17050254 URL |
[1] | WANG Teng-hui, GE Wen-dong, LUO Ya-fang, FAN Zhen-yu, WANG Yu-shu. Gene Mapping of Kale White Leaves Based on Whole Genome Re-sequencing of Extreme Mixed Pool(BSA) [J]. Biotechnology Bulletin, 2023, 39(9): 176-182. |
[2] | FANG Lan, LI Yan-yan, JIANG Jian-wei, CHENG Sheng, SUN Zheng-xiang, ZHOU Yi. Isolation, Identification and Growth-promoting Characteristics of Endohyphal Bacterium 7-2H from Endophytic Fungi of Spiranthes sinensis [J]. Biotechnology Bulletin, 2023, 39(8): 272-282. |
[3] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[4] | YAO Jin-dong, TANG Hua-mei, YANG Wen-xiao, ZHANG Li-shan, LIN Xiang-min. Comparative Proteomics Analysis of Aeromonas hydrophila Under Enrofloxacin Stress [J]. Biotechnology Bulletin, 2023, 39(4): 288-296. |
[5] | ZHANG Zhi-xia, LI Tian-pei, ZENG Hong, ZHU Xi-xian, YANG Tian-xiong, MA Si-nan, HUANG Lei. Genome Sequencing and Bioinformatics Analysis of Gelidibacter sp. PG-2 [J]. Biotechnology Bulletin, 2023, 39(3): 290-300. |
[6] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[7] | ZHANG Ao-jie, LI Qing-yun, SONG Wen-hong, YAN Shao-hui, TANG Ai-xing, LIU You-yan. Whole Genome Sequencing Analysis of a Phenol-degrading Strain Alcaligenes faecalis JF101 [J]. Biotechnology Bulletin, 2023, 39(10): 292-303. |
[8] | WANG Shuai, LV Hong-rui, ZHANG Hao, WU Zhan-wen, XIAO Cui-hong, SUN Dong-mei. Whole-Genome Sequencing Identification of Phosphate-solubilizing Bacteria PSB-R and Analysis of Its Phosphate-solubilizing Properties [J]. Biotechnology Bulletin, 2023, 39(1): 274-283. |
[9] | WEN Chang, LIU Chen, LU Shi-yun, XU Zhong-bing, AI Chao-fan, LIAO Han-peng, ZHOU Shun-gui. Biological Characteristics and Genome Analysis of a Novel Multidrug-resistant Shigella flexneri Phage [J]. Biotechnology Bulletin, 2022, 38(9): 127-135. |
[10] | LI Ji-hong, JING Yu-ling, MA Gui-zhen, GUO Rong-jun, LI Shi-dong. Genome Construction of Achromobacter 77 and Its Characteristics on Chemotaxis and Antibiotic Resistance [J]. Biotechnology Bulletin, 2022, 38(9): 136-146. |
[11] | ZHANG Ze-ying, FAN Qing-feng, DENG Yun-feng, WEI Ting-zhou, ZHOU Zheng-fu, ZHOU Jian, WANG Jin, JIANG Shi-jie. Whole Genome Sequencing and Comparative Genomic Analysis of a High-yield Lipase-producing Strain WCO-9 [J]. Biotechnology Bulletin, 2022, 38(10): 216-225. |
[12] | CHEN Ti-qiang, XU Xiao-lan, SHI Lin-chun, ZHONG Li-Yi. Sequencing and Analysis of the Whole Genome of Zizhi Cultivar ‘Wuzhi No.2’(Ganoderma sp. strain Zizhi S2) [J]. Biotechnology Bulletin, 2021, 37(11): 42-56. |
[13] | GUO He-bao, WANG Xing, HE Shan-wen, ZHANG Xiao-xia. Phenotypic Characteristics Combined with Genomic Analysis to Identify Different Colony Morphology Bacillus velezensis ACCC 19742 [J]. Biotechnology Bulletin, 2020, 36(2): 142-148. |
[14] | GAO Yun-shan, LIU Dan-dan, XU Jun-lin, SANG Yu-nong, LIANG Xia-xia, LIU Jian-xin, WANG Wen-bin. Recombinant Expression and Immunogenicity Analysis of the Porin Protein OmpF of Aeromonas hydrophila [J]. Biotechnology Bulletin, 2019, 35(9): 234-243. |
[15] | MAO Ran-ran, LI Xiao-yan, WU Yao, ZHANG Li-shan, LIN Zhen-ping, LIN Xiang-min. Cloning and Expression of Outer Membrane Protein OprM from Aeromonas hydrophila and the Evaluation of Its Immunoprotective Effect [J]. Biotechnology Bulletin, 2019, 35(9): 244-248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||