Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (1): 231-242.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0690
Previous Articles Next Articles
CHANG Lu-yin(), WANG Zhong-hua, LI Feng-min, GAO Zi-yuan, ZHANG Hui-hong, WANG Yi, LI Fang, HAN Yan-lai, JIANG Ying()
Received:
2023-07-17
Online:
2024-01-26
Published:
2024-02-06
Contact:
JIANG Ying
E-mail:chang931162@163.com;JY27486@163.com
CHANG Lu-yin, WANG Zhong-hua, LI Feng-min, GAO Zi-yuan, ZHANG Hui-hong, WANG Yi, LI Fang, HAN Yan-lai, JIANG Ying. Screening Multi-functional Rhizobacteria from Maize Rhizosphere and Their Ehancing Effects on Winter Wheat-Summer Maize Rotation System[J]. Biotechnology Bulletin, 2024, 40(1): 231-242.
土壤 Soil | 有机碳 Organic carbon/(g·kg-1) | 全磷 Total P/(g·kg-1) | 速效磷 Available P/(mg·kg-1) | 全钾 Total K/(g·kg-1) | 速效钾 Available K/(mg·kg-1) | pH |
---|---|---|---|---|---|---|
砂质潮土 Sandy fluvo-aquic soil | 1.91 | 0.29 | 3.44 | 19.56 | 20.42 | 7.39 |
Table 1 Basic properties of soil for testing
土壤 Soil | 有机碳 Organic carbon/(g·kg-1) | 全磷 Total P/(g·kg-1) | 速效磷 Available P/(mg·kg-1) | 全钾 Total K/(g·kg-1) | 速效钾 Available K/(mg·kg-1) | pH |
---|---|---|---|---|---|---|
砂质潮土 Sandy fluvo-aquic soil | 1.91 | 0.29 | 3.44 | 19.56 | 20.42 | 7.39 |
项目Item | 结果Results | 项目Item | 结果 Results | |
---|---|---|---|---|
革兰氏染色 Gram stain | + | 淀粉水解 Amylohydrolysis test | + | |
好氧性试验 Aerobic test | 兼性厌氧 Facultative anaerobic | 明胶液化 Gelatin liquefaction test | + | |
接触酶试验 Catalase | + | 硝酸盐还原 Nitrate reduction test | + | |
甲基红(M.R)反应 Methyl red test | - | 柠檬酸盐利用 Citrate utilization | + | |
V-P试验 Voges-Proskauer test | + |
Table 2 Physiological and biochemical characteristics of YM3 strain
项目Item | 结果Results | 项目Item | 结果 Results | |
---|---|---|---|---|
革兰氏染色 Gram stain | + | 淀粉水解 Amylohydrolysis test | + | |
好氧性试验 Aerobic test | 兼性厌氧 Facultative anaerobic | 明胶液化 Gelatin liquefaction test | + | |
接触酶试验 Catalase | + | 硝酸盐还原 Nitrate reduction test | + | |
甲基红(M.R)反应 Methyl red test | - | 柠檬酸盐利用 Citrate utilization | + | |
V-P试验 Voges-Proskauer test | + |
Fig. 4 Soil IAA, available potassium, and available phosphorus contents after 30 d of inoculation with strain YM3 * and ** indicate significant difference between treatments at 0.05 and 0.01 levels, respectively. The same below
项目 Item | CK | YM3 |
---|---|---|
总根长RL/cm | 886.39±220.22 | 1 488.67±210.93* |
各分级总根长 RL of each class/cm | ||
I/(RD 0.0-0.5 mm) | 691.11±165.95 | 1 192.04±157.68* |
II/(RD 0.5-1.0 mm) | 125.53±46.42 | 203.13±62.03 |
III/(RD 1.0-1.5 mm) | 46.56±8.97 | 59.59±3.35 |
IV/(RD>1.5 mm) | 22.92±0.67 | 33.08±5.63 |
根表面积RSA/cm2 | 121.61±27.37 | 193.61±16.59* |
各分级根表面积 RSA of each class/cm2 | ||
I/(RD 0.0-0.5 mm) | 46.43±13.62 | 74.04±4.67* |
II/(RD 0.5-1.0 mm) | 27.97±10.88 | 45.50±14.92 |
III/(RD 1.0-1.5 mm) | 17.41±3.43 | 22.41±0.99 |
IV/(RD>1.5 mm) | 15.49±1.85 | 23.97±4.47 |
根体积RV/cm3 | 1.33±0.26 | 2.01±0.07* |
各分级根体积 RV of each class/cm3 | ||
I/(RD 0.0-0.5 mm) | 14.26±3.19 | 23.57±1.49* |
II/(RD 0.5-1.0 mm) | 8.90±3.46 | 14.48±4.75 |
III/(RD 1.0-1.5 mm) | 5.54±1.09 | 7.13±0.32 |
IV/(RD>1.5 mm) | 4.93±0.59 | 7.63±1.42 |
根平均直径RD/mm | 0.44±0.01 | 0.42±0.02 |
根尖数RT | 4 505.66±1 199.46 | 7 720.02±1 115.10* |
分枝数RF | 4 760.67±780.30 | 9 143.33±2 714.33* |
Table 3 Effects of inoculation with strain YM3 on the root system structure and root classification of maize seedlings
项目 Item | CK | YM3 |
---|---|---|
总根长RL/cm | 886.39±220.22 | 1 488.67±210.93* |
各分级总根长 RL of each class/cm | ||
I/(RD 0.0-0.5 mm) | 691.11±165.95 | 1 192.04±157.68* |
II/(RD 0.5-1.0 mm) | 125.53±46.42 | 203.13±62.03 |
III/(RD 1.0-1.5 mm) | 46.56±8.97 | 59.59±3.35 |
IV/(RD>1.5 mm) | 22.92±0.67 | 33.08±5.63 |
根表面积RSA/cm2 | 121.61±27.37 | 193.61±16.59* |
各分级根表面积 RSA of each class/cm2 | ||
I/(RD 0.0-0.5 mm) | 46.43±13.62 | 74.04±4.67* |
II/(RD 0.5-1.0 mm) | 27.97±10.88 | 45.50±14.92 |
III/(RD 1.0-1.5 mm) | 17.41±3.43 | 22.41±0.99 |
IV/(RD>1.5 mm) | 15.49±1.85 | 23.97±4.47 |
根体积RV/cm3 | 1.33±0.26 | 2.01±0.07* |
各分级根体积 RV of each class/cm3 | ||
I/(RD 0.0-0.5 mm) | 14.26±3.19 | 23.57±1.49* |
II/(RD 0.5-1.0 mm) | 8.90±3.46 | 14.48±4.75 |
III/(RD 1.0-1.5 mm) | 5.54±1.09 | 7.13±0.32 |
IV/(RD>1.5 mm) | 4.93±0.59 | 7.63±1.42 |
根平均直径RD/mm | 0.44±0.01 | 0.42±0.02 |
根尖数RT | 4 505.66±1 199.46 | 7 720.02±1 115.10* |
分枝数RF | 4 760.67±780.30 | 9 143.33±2 714.33* |
[1] | 冯倩倩, 韩惠芳, 张亚运, 等. 耕作方式对麦-玉轮作农田固碳、保水性能及产量的影响[J]. 植物营养与肥料学报, 2018, 24(4): 869-879. |
Feng QQ, Han HF, Zhang YY, et al. Effects of tillage methods on soil carbon sequestration and water holding capacity and yield in wheat-maize rotation[J]. J Plant Nutr Fertil, 2018, 24(4): 869-879. | |
[2] | 穆文强, 康慎敏, 李平兰. 根际促生菌对植物的生长促进作用及机制研究进展[J]. 生命科学, 2022, 34(2): 118-127. |
Mu WQ, Kang SM, Li PL. Advances in rhizosphere growth-promoting bacteria function on plant growth facilitation and their mechanisms[J]. Chin Bull Life Sci, 2022, 34(2): 118-127. | |
[3] |
Pantoja-Guerra M, Valero-Valero N, Ramírez CA. Total auxin level in the soil-plant system as a modulating factor for the effectiveness of PGPR inocula: a review[J]. Chem Biol Technol Agric, 2023, 10(1): 6.
doi: 10.1186/s40538-022-00370-8 |
[4] |
Ha-Tran DM, Nguyen TTM, Hung SH, et al. Roles of plant growth-promoting rhizobacteria(PGPR)in stimulating salinity stress defense in plants: a review[J]. Int J Mol Sci, 2021, 22(6): 3154.
doi: 10.3390/ijms22063154 URL |
[5] |
Ali S, Khan N. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants[J]. Microbiol Res, 2021, 249: 126771.
doi: 10.1016/j.micres.2021.126771 URL |
[6] |
Tariq M. Antagonistic features displayed by plant growth promoting rhizobacteria(PGPR): a review[J]. J Plant Sci Phytopathol, 2017, 1(1): 38-43.
doi: 10.29328/journal.jpsp URL |
[7] | 周益帆, 白寅霜, 岳童, 等. 植物根际促生菌促生特性研究进展[J]. 微生物学通报, 2023, 50(2): 644-666. |
Zhou YF, Bai YS, Yue T, et al. Research progress on the growth-promoting characteristics of plant growth-promoting rhizobacteria[J]. Microbiol China, 2023, 50(2): 644-666. | |
[8] |
Beneduzi A, Ambrosini A, Passaglia LMP. Plant growth-promoting rhizobacteria(PGPR): their potential as antagonists and biocontrol agents[J]. Genet Mol Biol, 2012, 35(4 suppl): 1044-1051.
doi: 10.1590/S1415-47572012000600020 URL |
[9] |
Shabaan M, Asghar HN, Zahir ZA, et al. Salt-tolerant PGPR confer salt tolerance to maize through enhanced soil biological health, enzymatic activities, nutrient uptake and antioxidant defense[J]. Front Microbiol, 2022, 13: 901865.
doi: 10.3389/fmicb.2022.901865 URL |
[10] |
Adedayo AA, Babalola OO, Prigent-Combaret C, et al. The application of plant growth-promoting rhizobacteria in Solanum lycopersicum production in the agricultural system: a review[J]. PeerJ, 2022, 10: e13405.
doi: 10.7717/peerj.13405 URL |
[11] | Libbert E, Risch H. Interactions between plants and epiphytic bacteria regarding their auxin metabolism. V. isolation and identification of the IAA-producing and destroying bacteria from pea plants[J]. Physiol Plant, 1969, 22(1): 51-58. |
[12] |
Glickmann E, Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Appl Environ Microbiol, 1995, 61(2): 793-796.
doi: 10.1128/aem.61.2.793-796.1995 URL |
[13] | 赵小蓉, 林启美, 孙焱鑫, 等. 细菌解磷能力测定方法的研究[J]. 微生物学通报, 2001, 28(1): 1-4. |
Zhao XR, Lin QM, Sun YX, et al. The methods for quantifying capacity of bacteria in dissolving p compounds[J]. Microbiology, 2001, 28(1): 1-4. | |
[14] | 中国科学院南京土壤研究所微生物室. 土壤微生物研究法[M]. 北京: 科学出版社, 1985. |
Department of Microbiology, Nanjing Institute of Soil Research, Chinese Academy of Sciences. Soil microorganism research method[M]. Beijing: Science Press, 1985. | |
[15] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Handbook of identification of common bacterial systems[M]. Beijing: Science Press, 2001. | |
[16] | 郭素枝. 扫描电镜技术及其应用[M]. 厦门: 厦门大学出版社, 2006. |
Guo SZ. Scanning electron microscope technology and its application[M]. Xiamen, China: Xiamen University Press, 2006. | |
[17] |
Saghai-Maroof MA, Soliman KM, Jorgensen RA, et al. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics[J]. Proc Natl Acad Sci USA, 1984, 81(24): 8014-8018.
doi: 10.1073/pnas.81.24.8014 pmid: 6096873 |
[18] |
Jiang Y, Wu Y, Hu N, et al. Interactions of bacterial-feeding nematodes and indole-3-acetic acid(IAA)-producing bacteria promotes growth of Arabidopsis thaliana by regulating soil auxin status[J]. Appl Soil Ecol, 2020, 147: 103447.
doi: 10.1016/j.apsoil.2019.103447 URL |
[19] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
Bao SD. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. | |
[20] |
Shi GR, Xia SL, Ye J, et al. PEG-simulated drought stress decreases cadmium accumulation in castor bean by altering root morphology[J]. Environ Exp Bot, 2015, 111: 127-134.
doi: 10.1016/j.envexpbot.2014.11.008 URL |
[21] |
Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria(PGPR): emergence in agriculture[J]. World J Microbiol Biotechnol, 2012, 28(4): 1327-1350.
doi: 10.1007/s11274-011-0979-9 URL |
[22] |
Ma SY, Lin YB, Qin YQ, et al. Microbial diversity characteristics of Areca palm rhizosphere soil at different growth stages[J]. Plants, 2021, 10(12): 2706.
doi: 10.3390/plants10122706 URL |
[23] |
Ullah A, Akbar A, Luo QQ, et al. Microbiome diversity in cotton rhizosphere under normal and drought conditions[J]. Microb Ecol, 2019, 77(2): 429-439.
doi: 10.1007/s00248-018-1260-7 pmid: 30196314 |
[24] | de O Nunes PS, de Oliveira TS, et al. Bacillus subtilis and Bacillus licheniformis promote tomato growth[J]. Publ Braz Soc Microbiol, 2023, 54(1): 397-406. |
[25] | 王舒, 张林平, 郝菲菲, 等. 油茶根际高效溶磷细菌的筛选、鉴定及其安全性测试[J]. 林业科学研究, 2015, 28(2): 166-172. |
Wang S, Zhang LP, Hao FF, et al. Screening, identification and security test of Camellia oleifera rhizosphere phosphate-solubilizing bacteria[J]. For Res, 2015, 28(2): 166-172. | |
[26] | 徐文思, 姜瑛, 李引, 等. 一株植物促生菌的筛选、鉴定及其对花生的促生效应研究[J]. 土壤, 2014, 46(1): 119-125. |
Xu WS, Jiang Y, Li Y, et al. Isolation, identification of plant growth-promoting bacteria and its promoting effects on peanuts[J]. Soils, 2014, 46(1): 119-125. | |
[27] |
Liang CY, Tian J, Liao H. Proteomics dissection of plant responses to mineral nutrient deficiency[J]. Proteomics, 2013, 13(3/4): 624-636.
doi: 10.1002/pmic.v13.3-4 URL |
[28] |
Keswani C, Singh SP, Cueto L, et al. Auxins of microbial origin and their use in agriculture[J]. Appl Microbiol Biotechnol, 2020, 104(20): 8549-8565.
doi: 10.1007/s00253-020-10890-8 pmid: 32918584 |
[29] |
Niu YF, Jin GL, Li X, et al. Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana(L.) Heynh[J]. J Exp Bot, 2015, 66(13): 3841-3854.
doi: 10.1093/jxb/erv181 URL |
[30] | Tian XL, Wang GW, Zhu R, et al. Conditions and indicators for screening cotton(Gossypium hirsutum L.) varieties tolerant to low potassium[J]. Acta Agron Sin, 2008, 34(8): 1435-1443. |
[31] |
He AL, Zhao LY, Ren W, et al. A volatile producing Bacillus subtilis strain from the rhizosphere of Haloxylon ammodendron promotes plant root development[J]. Plant Soil, 2023, 486(1): 661-680.
doi: 10.1007/s11104-023-05901-2 |
[32] | 勾宇春, 王宗抗, 张志鹏, 等. 植物根际促生菌作用机制研究进展[J]. 应用与环境生物学报, 2023, 29(2): 495-506. |
Gou YC, Wang ZK, Zhang ZP, et al. Advance in role mechanisms of plant growth-promoting rhizobacteria[J]. Chin J Appl Environ Biol, 2023, 29(2): 495-506. | |
[33] |
李刚强, 王楠, 李永斌, 等. 两种固氮芽孢杆菌菌剂在小麦—玉米轮作区大田试验效果评价[J]. 中国农业科技导报, 2020, 22(4): 147-152.
doi: 10.13304/j.nykjdb.2019.0556 |
Li GQ, Wang N, Li YB, et al. Effect evaluation of field experiment of two Paenibacillus sp. agents in wheat-maize rotation area[J]. J Agric Sci Technol, 2020, 22(4): 147-152. | |
[34] |
Sapre S, Gontia-Mishra I, Tiwari S. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings(Avena sativa)[J]. Microbiol Res, 2018, 206: 25-32.
doi: 10.1016/j.micres.2017.09.009 URL |
[35] |
Elsharkawy MM, Elsawy MM, Ismail IA. Mechanism of resistance to Cucumber mosaic virus elicited by inoculation with Bacillus subtilis subsp. subtilis[J]. Pest Manag Sci, 2022, 78(1): 86-94.
doi: 10.1002/ps.v78.1 URL |
[36] |
Xie DS, Cai XW, Yang CP, et al. Studies on the control effect of Bacillus subtilis on wheat powdery mildew[J]. Pest Manag Sci, 2021, 77(10): 4375-4382.
doi: 10.1002/ps.v77.10 URL |
[37] |
Meena M, Swapnil P, Divyanshu K, et al. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: current perspectives[J]. J Basic Microbiol, 2020, 60(10): 828-861.
doi: 10.1002/jobm.v60.10 URL |
[1] | LUO Yi, ZHANG Li-juan, HUANG Wei, WANG Ning, Wuerlika MAITIHASEM, SHI Chong, WANG Wei. Identification of a Uranium-resistant Strain and Its Growth-promoting Properties [J]. Biotechnology Bulletin, 2023, 39(5): 286-296. |
[2] | GAO Ya-hui, JIANG Ming-guo, FENG Jing, ZHOU Gui. Screening of Potential PGPR Strains Producting Growth-promoting Volatile Compounds and Study on Their Growth-promoting Characteristics [J]. Biotechnology Bulletin, 2022, 38(3): 103-112. |
[3] | WANG Qi-yuan, WANG Jia-chen, YE Lei, JIANG Fan. Research Advances on Enhancement of Plant Resistance to Salinity Stress by Rhizobacteria Containing ACC Deaminase [J]. Biotechnology Bulletin, 2021, 37(2): 174-186. |
[4] | FU Yan-song, LI Yu-cong, XU Zhi-hui, SHAO Jia-hui, LIU Yun-peng, XUAN Wei, ZHANG Rui-fu. Research Progressing in Signals and Molecular Mechanisms of Plant Growth-Promoting Rhizobacteria to Regulate Plant Root Development [J]. Biotechnology Bulletin, 2020, 36(9): 42-48. |
[5] | PAN Jing, HUANG Cui-hua, PENG Fei, YOU Quan-gang, LIU Fei-yao, XUE Xian. Mechanisms of Salt Tolerance and Growth Promotion in Plant Induced by Plant Growth-Promoting Rhizobacteria [J]. Biotechnology Bulletin, 2020, 36(9): 75-87. |
[6] | LEI Hai-ying, ZHAO Qing-song, YANG Xiao, WANG Mao-mao, BAI Jie, SUN Yong-qi, WANG Zhi-jun. Isolation of Efficient Nitrogen-fixing Bacteria from the Rhizosphere of Sophora flavescens and the Growth-promoting Effect of Compound Microbial Fertilizer on Seedlings [J]. Biotechnology Bulletin, 2020, 36(9): 157-166. |
[7] | MA Jun, XU Tong-da. Non-canonical Auxin Signaling Pathway in Plants [J]. Biotechnology Bulletin, 2020, 36(7): 15-22. |
[8] | WAN Shui-xia, WANG Jing, LI Fan, JIANG Guang-yue, XU Wen-jing, LIU Zuo-jun. Screening and Identification of Phosphate Solubilizing Bacteria from Maize Rhizosphere Soil and Its Growth Promoting Effect [J]. Biotechnology Bulletin, 2020, 36(5): 98-103. |
[9] | YANG Mo, GAO Ting, LI Yan-jing, WEI Chong-yao, GAO Miao, MA Lian-ju. Isolation and Screening of Plant Growth-promoting Rhizobacteria in Pepper and Their Disease-resistant Growth-promoting Characteristics [J]. Biotechnology Bulletin, 2020, 36(5): 104-109. |
[10] | JIANG Huan-huan, QI Pei-shi, WANG Tong, CHI Xiao-yuan, CHEN Ming-na. Screening of Multi-function Nitrogen-fixing Bacteria in Peanut Rhizosphere and Their Tolerances to Saline [J]. Biotechnology Bulletin, 2019, 35(3): 24-30. |
[11] | ZHENG Wei, ZHOU Tao, JIANG Wei-ke, LI Jun, XIAO Cheng-hong, YANG Chang-gui, ZHANG Chen, GONG An-hui, WEI De-qun, BI Yan. Effects of Exogenous Paclobutrazol and GA3 Treatment on the Accumulation of Endogenous IAA and Transcriptional Level of Related Genes in the Development of Tuberous Toot of Pseudostellaria heterophylla [J]. Biotechnology Bulletin, 2019, 35(2): 46-52. |
[12] | MA Jin-jin, GE Bei-bei, SHI Li-ming, LIU Bing-hua, WEI Qiu-he, ZHANG Ke-cheng. Optimization of Fermentation Medium for Streptomyces roseoflavus NKZ-259 [J]. Biotechnology Bulletin, 2019, 35(2): 85-92. |
[13] | WU Dan ZHANG Zhi-peng MA Yu-chao. Isolation,Identification and Characterization of Arsenic-tolerant Bacteria from Lead-zinc Mine Tailing [J]. Biotechnology Bulletin, 2017, 33(5): 210-218. |
[14] | HU Xiao, HOU Xu, YUAN Xue, GUAN Dan, LIU Yue-ping. Research Progress on Mechanism of ARF and Aux/IAA Regulating Fruit Development and Ripening [J]. Biotechnology Bulletin, 2017, 33(12): 37-44. |
[15] | YANG Yang, GAO Ke-xiang, WU Yan, LIU Xiao-guang. Indole-3-acetic Acid-mediated Cross-kingdom Signalling Involved in Plant-bacteria Interactions [J]. Biotechnology Bulletin, 2016, 32(8): 14-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||