Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (2): 266-276.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0837
Previous Articles Next Articles
LEI Mei-ling1,2(), RAO Wen-hua2, HU Jin-feng2, YUE Qi1,2, WU Zu-jian1, FAN Guo-cheng2()
Received:
2023-08-28
Online:
2024-02-26
Published:
2024-03-13
Contact:
FAN Guo-cheng
E-mail:leimeilingfj@126.com;guochengfan@126.com
LEI Mei-ling, RAO Wen-hua, HU Jin-feng, YUE Qi, WU Zu-jian, FAN Guo-cheng. Bacterial Diversity and Structure in Rhizosphere Soil of Citrus Infested with Huanglongbing[J]. Biotechnology Bulletin, 2024, 40(2): 266-276.
分组Group | 发病组HLB group | 健康组Healthy group | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |||
黄龙病菌滴度值CLas Ct | 26.62±0.20 | 23.03±0.20 | 20.56±0.05 | 22.56±0.25 | None | None | None | None |
Table 1 qPCR detection of citrus HLB pathogen
分组Group | 发病组HLB group | 健康组Healthy group | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |||
黄龙病菌滴度值CLas Ct | 26.62±0.20 | 23.03±0.20 | 20.56±0.05 | 22.56±0.25 | None | None | None | None |
Fig. 1 Plant and leaf of C. reticulata in field A: Citrus reticulata with Huanglongbing(HLB). B: Healthy C. reticulata.C: Huanglongbing leaf of C. reticulata with HLB. D: Healthy C. reticulata leaf
Fig. 2 Alpha diversity index of healthy group and HLB group at the OTU level Healthy: Rhizosphere soil sample group of healthy C. reticulata; HLB: rhizosphere soil sample group of C. reticulata with HLB. The same below
属Genus | 相对丰度的差异Abundance difference | 健康组的相对丰度Healthy group abundance | 发病组的相对丰度HLB group abundance |
---|---|---|---|
芽孢杆菌属Bacillus | -0.476 | 2.264 | 1.788 |
假单胞菌属 Pseudomonas | -0.123 | 0.150 | 0.027 |
慢生根瘤菌属Bradyrhizobium | -0.126 | 1.458 | 1.332 |
伯克霍尔德菌属Bur- kholderia-Caballero- nia-Paraburkholderi | -0.174 | 0.557 | 0.383 |
鞘氨醇单胞菌属Sphingomonas | -0.207 | 0.298 | 0.091 |
中根瘤菌属 Mesorhizobium | -0.004 | 0.017 | 0.013 |
铜菌属Cupriavidus | 0.002 | 4.386×10-3 | 6.280×10-3 |
细胞弧菌属Cellvibrio | 0.002 | 1.595×10-3 | 3.589×10-3 |
变异菌属Variovorax | 0.047 | 0.027 | 0.074 |
Table 2 Comparative study on the relative abundance of rhizosphere part of the bacteria between healthy group and HLB group at the genus level
属Genus | 相对丰度的差异Abundance difference | 健康组的相对丰度Healthy group abundance | 发病组的相对丰度HLB group abundance |
---|---|---|---|
芽孢杆菌属Bacillus | -0.476 | 2.264 | 1.788 |
假单胞菌属 Pseudomonas | -0.123 | 0.150 | 0.027 |
慢生根瘤菌属Bradyrhizobium | -0.126 | 1.458 | 1.332 |
伯克霍尔德菌属Bur- kholderia-Caballero- nia-Paraburkholderi | -0.174 | 0.557 | 0.383 |
鞘氨醇单胞菌属Sphingomonas | -0.207 | 0.298 | 0.091 |
中根瘤菌属 Mesorhizobium | -0.004 | 0.017 | 0.013 |
铜菌属Cupriavidus | 0.002 | 4.386×10-3 | 6.280×10-3 |
细胞弧菌属Cellvibrio | 0.002 | 1.595×10-3 | 3.589×10-3 |
变异菌属Variovorax | 0.047 | 0.027 | 0.074 |
Fig. 6 Significant difference in relative abundance of bacteria at the phylum(A)and genus(B)level between healthy and HLB groups X axis represents HLB group and healthy group, and Y axis represents the average relative abundance of a species in HLB group and healthy group. *: P < 0.05, **: P < 0.01, ***: P < 0.001. The same below
Fig. 7 Correlation between bacterial community and environmental factors in the rhizosphere soil of healthy and HLB-infected citrus plants at the genus level The X-axis and Y-axis are environmental factors and species, respectively. The R values are shown in different colors, and the right legend is a color range of different R values
[1] | 范国成, 刘波, 吴如健, 等. 中国柑橘黄龙病研究30年[J]. 福建农业学报, 2009, 24(2): 183-190. |
Fan GC, Liu B, Wu RJ, et al. Thirty years of research on citrus Huanglongbing in China[J]. Fujian J Agric Sci, 2009, 24(2): 183-190. | |
[2] |
Ma WX, Pang ZQ, Huang XE, et al. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin[J]. Nat Commun, 2022, 13(1): 529.
doi: 10.1038/s41467-022-28189-9 |
[3] |
Gottwald TR. Current epidemiological understanding of citrus huanglongbing[J]. Annu Rev Phytopathol, 2010, 48: 119-139.
doi: 10.1146/annurev-phyto-073009-114418 pmid: 20415578 |
[4] |
Wang N, Trivedi P. Citrus huanglongbing: a newly relevant disease presents unprecedented challenges[J]. Phytopathology, 2013, 103(7): 652-665.
doi: 10.1094/PHYTO-12-12-0331-RVW URL |
[5] |
Yang CY, Powell CA, Duan YP, et al. Antimicrobial nanoemulsion formulation with improved penetration of foliar spray through Citrus leaf cuticles to control Citrus Huanglongbing[J]. PLoS One, 2015, 10(7): e0133826.
doi: 10.1371/journal.pone.0133826 URL |
[6] |
Li B, Wang SC, Zhang Y, et al. Acid soil improvement enhances disease tolerance in Citrus infected by Candidatus Liberibacter asiaticus[J]. Int J Mol Sci, 2020, 21(10): 3614.
doi: 10.3390/ijms21103614 URL |
[7] |
Zhou YJ, Tang YN, Hu CX, et al. Soil applied Ca, Mg and B altered phyllosphere and rhizosphere bacterial microbiome and reduced Huanglongbing incidence in Gannan Navel Orange[J]. Sci Total Environ, 2021, 791: 148046.
doi: 10.1016/j.scitotenv.2021.148046 URL |
[8] | 邱志燏, 黄红兰, 舒畅, 等. 柑橘黄龙病发病机理、症状及防控措施[J]. 生物灾害科学, 2015, 38(3): 193-200. |
Qiu ZY, Huang HL, Shu C, et al. Citrus yellow dragon disease pathogenesis, symptoms and prevention measures[J]. Biol Disaster Sci, 2015, 38(3): 193-200. | |
[9] |
Etxeberria E, Gonzalez P, Achor D, et al. Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees[J]. Physiol Mol Plant Pathol, 2009, 74(1): 76-83.
doi: 10.1016/j.pmpp.2009.09.004 URL |
[10] |
Johnson EG, Wu J, Bright DB, et al. Association of ‘Candidatus Liberibacter asiaticus’ root infection, but not phloem plugging with root loss on huanglongbing-affected trees prior to appearance of foliar symptoms[J]. Plant Pathol, 2014, 63(2): 290-298.
doi: 10.1111/ppa.2014.63.issue-2 URL |
[11] |
Berendsen RL, Vismans G, Yu K, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. ISME J, 2018, 12(6): 1496-1507.
doi: 10.1038/s41396-018-0093-1 pmid: 29520025 |
[12] |
Bulgarelli D, Schlaeppi K, Spaepen S, et al. Structure and functions of the bacterial microbiota of plants[J]. Annu Rev Plant Biol, 2013, 64: 807-838.
doi: 10.1146/annurev-arplant-050312-120106 pmid: 23373698 |
[13] |
Lazcano C, Boyd E, Holmes G, et al. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions[J]. Sci Rep, 2021, 11(1): 3188.
doi: 10.1038/s41598-021-82768-2 pmid: 33542451 |
[14] |
Srivastava AK, Das AK, Jagannadham PTK, et al. Bioprospecting microbiome for soil and plant health management amidst Huanglongbing threat in Citrus: a review[J]. Front Plant Sci, 2022, 13: 858842.
doi: 10.3389/fpls.2022.858842 URL |
[15] | Blaustein RA, Lorca GL, Meyer JL, et al. Defining the core Citrus leaf- and root-associated microbiota: factors associated with community structure and implications for managing Huanglongbing(Citrus greening)disease[J]. Appl Environ Microbiol, 2017, 83(11): e00210-e00217. |
[16] | 高金会, 张国良, 付卫东, 等. 基于宏基因组测序解析长刺蒺藜草入侵对根际土壤氮循环的影响[J]. 植物保护学报, 2022, 49(5): 1349-1357. |
Gao JH, Zhang GL, Fu WD, et al. Effects of spiny burr grass Cenchrus longispinus invasion on rhizosphere nitrogen cycle based on metagenome sequencing[J]. J Plant Prot, 2022, 49(5): 1349-1357. | |
[17] |
Trivedi P, Duan YP, Wang N. Huanglongbing, a systemic disease, restructures the bacterial community associated with citrus roots[J]. Appl Environ Microbiol, 2010, 76(11): 3427-3436.
doi: 10.1128/AEM.02901-09 URL |
[18] |
Trivedi P, He ZL, Van Nostrand JD, et al. Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere[J]. ISME J, 2012, 6(2): 363-383.
doi: 10.1038/ismej.2011.100 pmid: 21796220 |
[19] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
Lu RK. Methods of soil agrochemical analysis[M]. China Agriculture Scientech Press, 2000. | |
[20] |
Reinhold-Hurek B, Bünger W, Burbano CS, et al. Roots shaping their microbiome: global hotspots for microbial activity[J]. Annu Rev Phytopathol, 2015, 53: 403-424.
doi: 10.1146/annurev-phyto-082712-102342 pmid: 26243728 |
[21] | 秦泰春, 黄小兰, 简正军, 等. 赣南脐橙黄龙病植株根际土壤微生物多样性研究[J]. 西南农业学报, 2023, 36(2): 329-339. |
Qin TC, Huang XL, Jian ZJ, et al. Microbial diversity in rhizosphere soil of navel orange infected with citrus Huanglongbing in southern Jiangxi Province[J]. Southwest China J Agric Sci, 2023, 36(2): 329-339. | |
[22] |
Yang CH, Crowley DE, Menge JA. 16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots[J]. FEMS Microbiol Ecol, 2001, 35(2): 129-136.
pmid: 11295451 |
[23] |
Reiter B, Pfeifer U, Schwab H, et al. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica[J]. Appl Environ Microbiol, 2002, 68(5): 2261-2268.
doi: 10.1128/AEM.68.5.2261-2268.2002 URL |
[24] |
Coombs JT, Franco CMM. Isolation and identification of Actinobacteria from surface-sterilized wheat roots[J]. Appl Environ Microbiol, 2003, 69(9): 5603-5608.
doi: 10.1128/AEM.69.9.5603-5608.2003 URL |
[25] |
Remans R, Ramaekers L, Schelkens S, et al. Effect of Rhizobium-Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba[J]. Plant Soil, 2008, 312(1): 25-37.
doi: 10.1007/s11104-008-9606-4 URL |
[26] |
Igiehon NO, Babalola OO. Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture[J]. Int J Environ Res Public Health, 2018, 15(4): 574.
doi: 10.3390/ijerph15040574 URL |
[27] | Olivera S, Dusica D, Dragana J, et al. Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria[J]. Romanian Biotechnological Letters, 2011, 16(1): 5919-5926. |
[28] |
Riera N, Handique U, Zhang YZ, et al. Characterization of antimicrobial-producing beneficial bacteria isolated from Huanglongbing escape Citrus trees[J]. Front Microbiol, 2017, 8: 2415.
doi: 10.3389/fmicb.2017.02415 URL |
[29] |
Zhang YZ, Xu J, Riera N, et al. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome[J]. Microbiome, 2017, 5(1): 97.
doi: 10.1186/s40168-017-0304-4 pmid: 28797279 |
[30] |
Xu J, Zhang YZ, Zhang PF, et al. The structure and function of the global citrus rhizosphere microbiome[J]. Nat Commun, 2018, 9(1): 4894.
doi: 10.1038/s41467-018-07343-2 pmid: 30459421 |
[31] |
陈杰, 郭天文, 谭雪莲, 等. 马铃薯连作地健康株与病株根区土壤微生态特性比较[J]. 作物学报, 2013, 39(11): 2055-2064.
doi: 10.3724/SP.J.1006.2013.02055 |
Chen J, Guo TW, Tan XL, et al. Comparison of microecological characterization in rhizosphere soil between healthy and diseased plants in continuous cropping potato fields[J]. Acta Agron Sin, 2013, 39(11): 2055-2064.
doi: 10.3724/SP.J.1006.2013.02055 URL |
|
[32] | 段春梅, 薛泉宏, 呼世斌, 等. 连作黄瓜枯萎病株、健株根域土壤微生物生态研究[J]. 西北农林科技大学学报: 自然科学版, 2010, 38(4): 143-150. |
Duan CM, Xue QH, Hu SB, et al. Microbial ecology of Fusarium wilt infected and healthy cucumber plant in root zone of continuous cropping soil[J]. J Northwest A F Univ Nat Sci Ed, 2010, 38(4): 143-150. | |
[33] |
Chen XF, Wang JC, You YM, et al. When nanoparticle and microbes meet: the effect of multi-walled carbon nanotubes on microbial community and nutrient cycling in hyperaccumulator system[J]. J Hazard Mater, 2022, 423: 126947.
doi: 10.1016/j.jhazmat.2021.126947 URL |
[34] |
Wu SC, Chang BS, Li YY. Effect of the coexistence of endosulfan on the lindane biodegradation by Novosphingobium barchaimii and microbial enrichment cultures[J]. Chemosphere, 2022, 297: 134063.
doi: 10.1016/j.chemosphere.2022.134063 URL |
[35] | DeAngelis KM, Pold G. Genome sequences of Frankineae sp. strain MT45 and Jatrophihabitans sp. strain GAS493, two Actinobacteria isolated from forest soil[J]. Microbiol Resour Announc, 2020, 9(38): e00614-e00620. |
[36] |
Spieck E, Sass K, Keuter S, et al. Defining culture conditions for the hidden nitrite-oxidizing bacterium Nitrolancea[J]. Front Microbiol, 2020, 11: 1522.
doi: 10.3389/fmicb.2020.01522 pmid: 32849321 |
[37] |
Ramírez-Bahena MH, Tejedor C, Martín I, et al. Endobacter medicaginis gen. nov., sp. nov., isolated from alfalfa nodules in an acidic soil[J]. Int J Syst Evol Microbiol, 2013, 63(Pt_5): 1760-1765.
doi: 10.1099/ijs.0.041368-0 URL |
[38] |
Saravanan VS, Madhaiyan M, Osborne J, et al. Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion[J]. Microb Ecol, 2008, 55(1): 130-140.
pmid: 17574542 |
[39] |
Reis VM, Teixeira KR. Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture[J]. J Basic Microbiol, 2015, 55(8): 931-949.
doi: 10.1002/jobm.v55.8 URL |
[40] |
de Oliveira Costa PH, et al.do Nascimento SV, Herrera H, Non-specific interactions of rhizospheric microbial communities support the establishment of Mimosa acutistipula var. ferrea in an Amazon rehabilitating mineland[J]. Processes, 2021, 9(11): 2079.
doi: 10.3390/pr9112079 URL |
[41] | Bai JF, Zhang SJ, Gu WH, et al. Bioleaching of heavy metals from a contaminated soil using bacteria from wastewater sludge[M]//Sustainable and Circular Management of Resources and Waste Towards a Green Deal. Amsterdam: Elsevier, 2023: 183-198. |
[42] | Johnson DB. Encyclopedia of Microbiology[M]. 3rd ed. New York: Academic Press, 2009, 107-126. |
[43] |
Coupland K, Johnson DB. Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria[J]. FEMS Microbiol Lett, 2008, 279(1): 30-35.
pmid: 18081844 |
[44] |
Malki M, De Lacey AL, Rodríguez N, et al. Preferential use of an anode as an electron acceptor by an acidophilic bacterium in the presence of oxygen[J]. Appl Environ Microbiol, 2008, 74(14): 4472-4476.
doi: 10.1128/AEM.00209-08 URL |
[45] | Li LZ, Liu ZH, Zhang M, et al. Insights into the metabolism and evolution of the genus Acidiphilium, a typical acidophile in acid mine drainage[J]. mSystems, 2020, 5(6): e00867-e00820. |
[46] | Ge L, Wang X, Hou JW, et al. Study on degradation characteristics of imazamox by Streptomycetaceae[J]. J Environ Sci Heath B, 2022, 57(6): 470-478. |
[1] | LI Xue, LI Rong-ou, KONG Mei-yi, HUANG Lei. The Growth Promoting Effect of Bacillus amyloliquefaciens SQ-2 on Rice [J]. Biotechnology Bulletin, 2024, 40(2): 109-119. |
[2] | XU Yang, ZHANG Rui-ying, DAI Liang-xiang, ZHANG Guan-chu, DING Hong, ZHANG Zhi-meng. Regulation of Nitrogen Application on Peanut Seed Germination and Spermosphere Bacterial Community Structure Under Salt Stress [J]. Biotechnology Bulletin, 2024, 40(2): 253-265. |
[3] | FENG Lu-yao, ZHAO Jiang-yuan, SHI Zhu-feng, MO Yan-fang, YANG Tong-yu, SHEN Yun-xin, HE Fei-fei, LI Ming-gang, YANG Pei-wen. Isolation and Identification of Bacteria in Forest Rhizosphere Soil and Their Biological Activity Screening [J]. Biotechnology Bulletin, 2024, 40(1): 294-307. |
[4] | XIE Tian-peng, ZHANG Jia-ning, DONG Yong-jun, ZHANG Jian, JING Ming. Effect of Premature Bolting on the Rhizosphere Soil Microenvironment of Angelica sinensis [J]. Biotechnology Bulletin, 2023, 39(7): 206-218. |
[5] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[6] | SUN Hai-hang, GUAN Hui-lin, WANG Xu, WANG Tong, LI Hong-lin, PENG Wen-jie, LIU Bo-zhen, FAN Fang-ling. Effects of Biochar on the Soil Properties and Fungal Community Structure under Continuous Cropping of Panax notoginseng [J]. Biotechnology Bulletin, 2023, 39(2): 221-231. |
[7] | LI Ying, LONG Chang-mei, JIANG Biao, HAN Li-zhen. Colonization on the Peanuts of Two Plant-growth Promoting Rhizobacteria Strains and Effects on the Bacterial Community Structure of Rhizosphere [J]. Biotechnology Bulletin, 2022, 38(9): 237-247. |
[8] | CHEN Tian-ci, WU Shao-lan, YANG Guo-hui, JIANG Dan-xia, JIANG Yu-ji, CHEN Bing-zhi. Effects of Ganoderma resinaceum Alcohol Extract on Sleep and Intestinal Microbiota in Mice [J]. Biotechnology Bulletin, 2022, 38(8): 225-232. |
[9] | XU Yang, ZHANG Guan-chu, DING Hong, QIN Fei-fei, ZHANG Zhi-meng, DAI Liang-xiang. Effects of Soil Types on Bacterial Community Diversity on the Rhizosphere Soil of Arachis hypogaea and Yield [J]. Biotechnology Bulletin, 2022, 38(6): 221-234. |
[10] | ZHONG Hui, LIU Ya-jun, WANG Bin-hua, HE Meng-jie, WU Lan. Effects of Analysis Methods on the Analyzed Results of 16S rRNA Gene Amplicon Sequencing in Bacterial Communities [J]. Biotechnology Bulletin, 2022, 38(6): 81-92. |
[11] | XIE Tian-peng, LIU Na, LIU Yue-min, QU Xin, BO Shuang-qin, JING Ming. Effects of Chemical Fertilizer Reduction and Application of Plant Growth Regulators from Traditional Chinese Medicine on the Quality and Its Bacterial Community in Rhizosphere Soil [J]. Biotechnology Bulletin, 2022, 38(3): 79-91. |
[12] | ZHAO Lin-yan, GUAN Hui-lin, XIANG Ping, LI Ze-cheng, BAI Yu-long, SONG Hong-chuan, SUN Shi-zhong, XU Wu-mei. Composition Features of Microbial Community in the Rhizospheric Soil of Bletilla striata with Root Rot [J]. Biotechnology Bulletin, 2022, 38(2): 67-74. |
[13] | CHEN Yu-jie, ZHENG Hua-bao, ZHOU Xin-yan. Modified High-throughput Sequencing Reveals the Effects of Different Algicides towards Algal Community [J]. Biotechnology Bulletin, 2022, 38(11): 70-79. |
[14] | CAO Xiu-kai, WANG Shan, GE Ling, ZHANG Wei-bo, SUN Wei. Advances in Extrachromosomal Circular DNA and Their Application in Domestic Animal Breeding [J]. Biotechnology Bulletin, 2022, 38(1): 247-257. |
[15] | MAO Ting, NIU Yong-yan, ZHENG Qun, YANG Tao, MU Yong-song, ZHU Ying, JI Bin, WANG Zhi-ye. Effects of Microbial Inoculants on the Fermentation Quality and Microbial Community Diversity of Alfalfa Silage [J]. Biotechnology Bulletin, 2021, 37(9): 86-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||