Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (8): 264-274.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0230
Previous Articles Next Articles
CHE Jian-mei1(), LAI Gong-ti2, LI Si-yu2, GUO Ao-lin2, CHEN Bing-xing1, CHEN Xing1, LIU Bo1(), LAI Cheng-chun2()
Received:
2024-03-08
Online:
2024-08-26
Published:
2024-09-05
Contact:
LIU Bo, LAI Cheng-chun
E-mail:chejm2002@163.com;fzliubo@163.com;lccisland@163.com
CHE Jian-mei, LAI Gong-ti, LI Si-yu, GUO Ao-lin, CHEN Bing-xing, CHEN Xing, LIU Bo, LAI Cheng-chun. Effects of Compound Microbial Agent on the Growth, Quality and Rhizosphere Environment of Grape[J]. Biotechnology Bulletin, 2024, 40(8): 264-274.
Fig. 1 Effects of compound microbial agent on the physiological indexes and antioxidant enzyme activities of grape leaves Different letters indicate significant difference at 0.05 probability level among different treatments for each year. The same below
处理 Treatment | 穗宽 Spike width/mm | 单穗重 Single panicle weight/g | 单果重 Single fruit weight/g | 果粒纵径 Longitudinal diameter/mm | 果粒横径 Transverse diameter/mm |
---|---|---|---|---|---|
对照组Control | 79.82±4.12b | 312.99±20.61b | 3.20±0.05b | 17.35±0.18b | 18.23±0.30b |
处理组Treatment | 105.33±4.76a | 375.14±30.65a | 4.13±0.14a | 18.86±0.23a | 19.40±0.24a |
Table 1 Effects of compound microbial agent on grape external quality
处理 Treatment | 穗宽 Spike width/mm | 单穗重 Single panicle weight/g | 单果重 Single fruit weight/g | 果粒纵径 Longitudinal diameter/mm | 果粒横径 Transverse diameter/mm |
---|---|---|---|---|---|
对照组Control | 79.82±4.12b | 312.99±20.61b | 3.20±0.05b | 17.35±0.18b | 18.23±0.30b |
处理组Treatment | 105.33±4.76a | 375.14±30.65a | 4.13±0.14a | 18.86±0.23a | 19.40±0.24a |
处理 Treatments | 可溶性固形物 Soluble solid/% | 可溶性糖 Soluble sugar/% | 总糖Total sugar /(g·100 g-1) | 总酸Total acid /(g·kg-1) | 糖酸比Ratio of total sugar and total acid | 可溶性蛋白Soluble protein /(mg·g-1) | PPO酶活性PPO acitivity /(U·min-1·g-1) |
---|---|---|---|---|---|---|---|
对照组Control | 19.01±0.37b | 17.53±0.10b | 17.67±0.08b | 5.42±0.07a | 32.58±0.50b | 0.19±0.02b | 6.00±0.16b |
处理组Treatment | 20.40±0.39a | 18.34±0.05a | 18.55±0.03a | 5.33±0.06a | 34.78±0.43a | 0.37±0.06a | 33.33±0.11a |
Table 2 Effects of compound microbial agent on grape internal quality
处理 Treatments | 可溶性固形物 Soluble solid/% | 可溶性糖 Soluble sugar/% | 总糖Total sugar /(g·100 g-1) | 总酸Total acid /(g·kg-1) | 糖酸比Ratio of total sugar and total acid | 可溶性蛋白Soluble protein /(mg·g-1) | PPO酶活性PPO acitivity /(U·min-1·g-1) |
---|---|---|---|---|---|---|---|
对照组Control | 19.01±0.37b | 17.53±0.10b | 17.67±0.08b | 5.42±0.07a | 32.58±0.50b | 0.19±0.02b | 6.00±0.16b |
处理组Treatment | 20.40±0.39a | 18.34±0.05a | 18.55±0.03a | 5.33±0.06a | 34.78±0.43a | 0.37±0.06a | 33.33±0.11a |
处理Treatment | 菌株编号Strain No. | 鉴定种类Identified species | 16S rRNA相似性16S rRNA similarity /% | 含量Content(×103 CFU·g-1) |
---|---|---|---|---|
对照组Control | CK1 | Bacillus cereus | 99.65 | 1.33 |
CK2 | Bacillus aryabhattai | 99.24 | 2.67 | |
CK4 | Paenibacillus favisporus | 99.65 | 3.33 | |
CK6 | Bacillus altitudinis | 99.86 | 2 | |
CK7 | Bacillus zanthoxyli | 99.93 | 8 | |
CK13 | Paenibacillus lautus | 99.04 | 0.67 | |
CK22 | Paenibacillus cineris | 99.66 | 2 | |
CK26 | Paenibacillus illinoisensis | 98.62 | 0.67 | |
CK28 | Neobacillus drentensis | 99.57 | 0.67 | |
CK34 | Cytobacillus oceanisediminis | 99.79 | 0.67 | |
CK37 | Oceanobacillus sojae | 99.80 | 0.67 | |
CK39 | Paenibacillus pinisoli | 98.90 | 0.67 | |
CK42 | Bacillus proteolyticus | 99.79 | 0.67 | |
CK52 | Paenibacillus cookii | 99.03 | 0.67 | |
CK55 | Neobacillus bataviensis | 99.50 | 0.67 | |
处理组 Treatment | T1 | Bacillus cereus | 99.72 | 2 |
T2 | Bacillus zanthoxyli | 99.93 | 19.33 | |
T7 | Terribacillus saccharophilus | 99.38 | 1.33 | |
T11 | Bacillus wiedmannii | 99.65 | 0.67 | |
T16 | Oceanobacillus sojae | 99.72 | 0.67 | |
T18 | Bacillus tequilensis | 100 | 1.33 | |
T22 | Bacillus safensis | 99.79 | 0.67 | |
T23 | Bacillus lentus | 99.79 | 0.67 | |
T26 | Neobacillus cucumis | 98.68 | 1.33 | |
T30 | Bacillus pseudomycoides | 99.45 | 4 | |
T37 | Bacillus albus | 99.79 | 1.33 | |
T40 | Bacillus dafuensis | 99.59 | 0.67 | |
T41 | Mesobacillus subterraneus | 99.23 | 0.67 | |
T47 | Bacillus endophyticus | 99.44 | 0.67 | |
T48 | Bacillus megaterium | 99.89 | 2.67 | |
T50 | Bacillus pumilus | 99.72 | 0.67 | |
T51 | Bacillus proteolyticus | 99.79 | 0.67 | |
T54 | Bacillus haikouensis | 97.82 | 0.67 | |
T58 | Bacillus aryabhattai | 99.93 | 2.67 | |
T59 | Bacillus vietnamensis | 98.95 | 0.67 | |
T69 | Peribacillus frigoritoleran | 99.66 | 2 | |
T78 | Lysinibacillus macroide | 99.72 | 0.67 | |
T82 | Psychrobacillus vulpis | 98.90 | 0.67 | |
T83 | Lysinibacillus agricola | 99.24 | 1.33 | |
T84 | Cytobacillus oceanisediminis | 99.24 | 1.33 | |
T103 | Bacillus australimaris | 99.79 | 0.67 | |
T105 | Bacillus rhizoplanae | 99.44 | 1.33 | |
T127 | Bacillus stercoris | 99.52 | 0.67 |
Table 3 Isolation and identification of Bacillus-like species in grape rhizosphere soil under different treatments
处理Treatment | 菌株编号Strain No. | 鉴定种类Identified species | 16S rRNA相似性16S rRNA similarity /% | 含量Content(×103 CFU·g-1) |
---|---|---|---|---|
对照组Control | CK1 | Bacillus cereus | 99.65 | 1.33 |
CK2 | Bacillus aryabhattai | 99.24 | 2.67 | |
CK4 | Paenibacillus favisporus | 99.65 | 3.33 | |
CK6 | Bacillus altitudinis | 99.86 | 2 | |
CK7 | Bacillus zanthoxyli | 99.93 | 8 | |
CK13 | Paenibacillus lautus | 99.04 | 0.67 | |
CK22 | Paenibacillus cineris | 99.66 | 2 | |
CK26 | Paenibacillus illinoisensis | 98.62 | 0.67 | |
CK28 | Neobacillus drentensis | 99.57 | 0.67 | |
CK34 | Cytobacillus oceanisediminis | 99.79 | 0.67 | |
CK37 | Oceanobacillus sojae | 99.80 | 0.67 | |
CK39 | Paenibacillus pinisoli | 98.90 | 0.67 | |
CK42 | Bacillus proteolyticus | 99.79 | 0.67 | |
CK52 | Paenibacillus cookii | 99.03 | 0.67 | |
CK55 | Neobacillus bataviensis | 99.50 | 0.67 | |
处理组 Treatment | T1 | Bacillus cereus | 99.72 | 2 |
T2 | Bacillus zanthoxyli | 99.93 | 19.33 | |
T7 | Terribacillus saccharophilus | 99.38 | 1.33 | |
T11 | Bacillus wiedmannii | 99.65 | 0.67 | |
T16 | Oceanobacillus sojae | 99.72 | 0.67 | |
T18 | Bacillus tequilensis | 100 | 1.33 | |
T22 | Bacillus safensis | 99.79 | 0.67 | |
T23 | Bacillus lentus | 99.79 | 0.67 | |
T26 | Neobacillus cucumis | 98.68 | 1.33 | |
T30 | Bacillus pseudomycoides | 99.45 | 4 | |
T37 | Bacillus albus | 99.79 | 1.33 | |
T40 | Bacillus dafuensis | 99.59 | 0.67 | |
T41 | Mesobacillus subterraneus | 99.23 | 0.67 | |
T47 | Bacillus endophyticus | 99.44 | 0.67 | |
T48 | Bacillus megaterium | 99.89 | 2.67 | |
T50 | Bacillus pumilus | 99.72 | 0.67 | |
T51 | Bacillus proteolyticus | 99.79 | 0.67 | |
T54 | Bacillus haikouensis | 97.82 | 0.67 | |
T58 | Bacillus aryabhattai | 99.93 | 2.67 | |
T59 | Bacillus vietnamensis | 98.95 | 0.67 | |
T69 | Peribacillus frigoritoleran | 99.66 | 2 | |
T78 | Lysinibacillus macroide | 99.72 | 0.67 | |
T82 | Psychrobacillus vulpis | 98.90 | 0.67 | |
T83 | Lysinibacillus agricola | 99.24 | 1.33 | |
T84 | Cytobacillus oceanisediminis | 99.24 | 1.33 | |
T103 | Bacillus australimaris | 99.79 | 0.67 | |
T105 | Bacillus rhizoplanae | 99.44 | 1.33 | |
T127 | Bacillus stercoris | 99.52 | 0.67 |
Fig. 6 Heatmap correlation analysis among Bacillus sp. growth index of leaves and fruits A: Correlation between Bacillus and leaf growth indexes; B: correlation between Bacillus and fruit growth indexes. CA: Chlorophyll a; CB: chlorophyll b; TD: transverse diameter; SW: single grain weight; TC: total acid; SS: soluble solids; BZ: B. zanthoxyli; BP: B. pseudomycoides; BM: B. megaterium; BA: B. aryabhattai
[1] | 张富民, 赖呈纯, 黄贤贵, 等. 196份福建葡萄品种资源亲缘关系的ISSR分析[J]. 福建农业学报, 2018, 33(3): 263-268. |
Zhang FM, Lai CC, Huang XG, et al. Genetic relationship among grape varieties in Fujian by ISSR markers[J]. Fujian J Agric Sci, 2018, 33(3): 263-268. | |
[2] | 陈国品, 李玮, 谢蜀豫, 等. 2种类型微生物肥对夏黑葡萄生长发育及果实品质的影响[J]. 西南农业学报, 2021, 34(1): 106-112. |
Chen GP, Li W, Xie SY, et al. Effects of two types of microbial fertilizers on summer black grape growth and fruit quality[J]. Southwest China J Agric Sci, 2021, 34(1): 106-112. | |
[3] | Vanina FF, Bello F, Fernanda RM, et al. Biocontrol of Penicillium digitatum by native Bacillus and Pseudomonas strains isolated from orange peel[J]. Biol Contr, 2023, 186: 105340. |
[4] | 王军, 陈云, 石磊, 等. 微生物菌剂在巨峰葡萄上的肥效试验[J]. 新疆农垦科技, 2020, 43(11): 35-38. |
Wang J, Chen Y, Shi L, et al. Fertilizer efficiency test of microbial agents on kyoho grape[J]. Xinjiang Farm Res Sci Technol, 2020, 43(11): 35-38. | |
[5] | Che JM, Lai CC, Lai GT, et al. Effects of a mixture of Brevibacillus brevis with other Bacillus sp. strains against gray mold and on enzyme activities of grape[J]. Agronomy, 2023, 13(7): 1724. |
[6] | Du CJ, Yang D, Ye YF, et al. Construction of a compound microbial agent for biocontrol against Fusarium wilt of banana[J]. Front Microbiol, 2022, 13: 1066807. |
[7] | Hu J, Wei Z, Friman VP, et al. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression[J]. mBio, 2016, 7(6): e01790-e01716. |
[8] | 夏木凤, 陈婷婷. 复合微生物菌剂对水稻生长及产量的影响[J]. 特种经济动植物, 2023, 26(9): 38-40. |
Xia MF, Chen TT. Effects of compound microbial agents on rice growth and yield[J]. Spec Econ Anim Plants, 2023, 26(9): 38-40. | |
[9] | 刘欣. 复合生防菌对苹果腐烂病防治的增效机制研究[D]. 呼和浩特: 内蒙古农业大学, 2022. |
Liu X. Study on synergistic mechanism of compound biocontrol bacteria against apple canker disease[D]. Hohhot: Inner Mongolia Agricultural University, 2022. | |
[10] |
萧利珠, 郑文秀, 陈铭炯, 等. 溶磷复合菌剂筛选及其对山核桃幼苗的生物学效应[J]. 核农学报, 2021, 35(9): 2165-2171.
doi: 10.11869/j.issn.100-8551.2021.09.2165 |
Xiao LZ, Zheng WX, Chen MJ, et al. Screening the phosphate-solublizing mixing microbial inoculums and their growth-promoting effects on Chinese walnut Carya cathayensis sarg. seedlings[J]. J Nucl Agric Sci, 2021, 35(9): 2165-2171. | |
[11] | Che JM, Liu B, Lin YZ, et al. Draft genome sequence of biocontrol bacterium Brevibacillus brevis strain FJAT-0809-GLX[J]. Genome Announc, 2013, 1(2): e0016013. |
[12] | Che JM, Liu B, Chen Z, et al. Identification of ethylparaben as the antimicrobial substance produced by Brevibacillus brevis FJAT-0809-GLX[J]. Microbiol Res, 2015, 172: 48-56. |
[13] | Che JM, Liu B, Liu GH, et al. Induced mutation breeding of Brevibacillus brevis FJAT-0809-GLX for improving ethylparaben production and its application in the biocontrol of Lasiodiplodia theobromae[J]. Postharvest Biol Technol, 2018, 146: 60-67. |
[14] | 车建美, 刘波, 刘国红, 等. 优化短短芽孢杆菌施用技术对番茄和辣椒幼苗生长的影响[J]. 中国蔬菜, 2018(4): 43-47. |
Che JM, Liu B, Liu GH, et al. Effect of optimized application technology on tomato and pepper seedling growth of Brevibacillus brevis FJAT-0809-GLX[J]. China Veg, 2018(4): 43-47. | |
[15] | 蔡庆生. 植物生理学实验[M]. 北京: 中国农业大学出版社, 2013. |
Cai QS. Plant physiology experiment[M]. Beijing: China Agricultural University Press, 2013. | |
[16] | 陈志成. 8个树种对干旱胁迫的生理响应及抗旱性评价[D]. 泰安: 山东农业大学, 2013. |
Chen ZC. Physiological response of eight tree species to drought stress and evaluation of drought resistance[D]. Tai'an: Shandong Agricultural University, 2013. | |
[17] | Al Azad S, Moazzem HK, Rahman SMM, et al. In ovo inoculation of duck embryos with different strains of Bacillus cereus to analyse their synergistic post-hatch anti-allergic potentialities[J]. Vet Med Sci, 2020, 6(4): 992-999. |
[18] | Chen L, Li KK, Shang JY, et al. Plant growth-promoting bacteria improve maize growth through reshaping the rhizobacterial community in low-nitrogen and low-phosphorus soil[J]. Biol Fertil Soils, 2021, 57(8): 1075-1088. |
[19] |
Gupta R, Kumari A, Sharma S, et al. Identification, characterization and optimization of phosphate solubilizing rhizobacteria(PSRB)from rice rhizosphere[J]. Saudi J Biol Sci, 2022, 29(1): 35-42.
doi: 10.1016/j.sjbs.2021.09.075 pmid: 35002393 |
[20] | 杨文娟, 余君, 杨春雷, 等. 烟草化感自毒物质降解复合菌剂的优化及应用效果评价[J]. 微生物学报, 2024, 64(4): 1044-1063. |
Yang WJ, Yu J, Yang CL, et al. Optimization and evaluation of a compound bacterial agent degrading autotoxins of tobacco[J]. Acta Microbiol Sin, 2024, 64(4): 1044-1063. | |
[21] | 陈悦, 张秀英, 张丹, 等. 微生物菌剂与大蒜油配施对银叶病苹果叶片生理特性及果实品质的影响[J]. 果树资源学报, 2024, 5(1): 1-7. |
Chen Y, Zhang XY, Zhang D, et al. Effects of microbial agents combined with garlic oil on the physiological characteristics and fruit quality of apple leaves with silver leaf disease[J]. J Fruit Resour, 2024, 5(1): 1-7. | |
[22] | 梁洪榜, 赵丽, 周云鹏, 等. 盐碱地应用根际促生菌对土壤改良、作物产量与品质的影响——基于Meta分析[J]. 土壤, 2022, 54(6): 1257-1264. |
Liang HB, Zhao L, Zhou YP, et al. Effects of rhizosphere growth-promoting bacteria on soil improvement, crop yield and quality in saline-alkali land—a meta-analysis[J]. Soils, 2022, 54(6): 1257-1264. | |
[23] | 张智, 景仕豪, 周楠, 等. 不同复合微生物菌剂及施用量对番茄生长和品质的影响[J]. 西北农林科技大学学报: 自然科学版, 2023, 51(9): 119-128, 137. |
Zhang Z, Jing SH, Zhou N, et al. Effects of different compound microbial inoculants and application rates on growth and fruit quality of tomato[J]. J Northwest A F Univ Nat Sci Ed, 2023, 51(9): 119-128, 137. | |
[24] | 保善存, 樊光辉, 李发毅. 解淀粉芽孢杆菌微生物菌剂对枸杞生长及土壤性状的影响[J]. 中国土壤与肥料, 2023(8): 112-120. |
Bao SC, Fan GH, Li FY. Effects of Bacillus amyloliquefaciens microbial agent on the growth and soil properties of Lycium barbarum L[J]. Soil Fertil Sci China, 2023(8): 112-120. | |
[25] | Najafi M, Esfahani MN, Vatandoost J, et al. Antioxidant enzymes activity associated with resistance to Phytophthora melonis-pumpkin blight[J]. Physiol Mol Plant Pathol, 2024, 129: 102192. |
[26] | 刘明, 王昕, 高涵, 等. 一株菜豆普通细菌性疫病拮抗细菌的分离鉴定及其生防效果[J]. 中国生物防治学报, 2024, 40(1): 157-166. |
Liu M, Wang X, Gao H, et al. Isolation, identification and control effect of antagonistic bacteria on common bacterial blight of common bean[J]. Chin J Biol Contr, 2024, 40(1): 157-166. | |
[27] | Luo M, Chen Y, Huang QR, et al. Trichoderma koningiopsis Tk905: an efficient biocontrol, induced resistance agent against banana Fusarium wilt disease and a potential plant-growth-promoting fungus[J]. Front Microbiol, 2023, 14: 1301062. |
[28] | Wang LQ, Li XT, Galileya Medison R, et al. Biocontrol efficacy of Burkholderia pyrrocinia S17-377 in controlling rice sheath blight[J]. Biol Contr, 2023, 187: 105368. |
[29] | 全龙萍, 王明, 周波, 等. 草炭和微生物菌剂对‘美乐’葡萄生长发育和果实品质的影响[J]. 植物生理学报, 2023, 59(12): 2344-2354. |
Quan LP, Wang M, Zhou B, et al. Effects of peat and microbial agents on the growth and development of ‘Merlot’ grape[J]. Plant Physiology Journal, 2023, 59(12): 2344-2354. | |
[30] |
李绕勇, 董奎奎, 杨阔, 等. 特基拉芽孢杆菌KXF 6501对猕猴桃灰霉病的防控效果及诱导果实抗性研究[J]. 中国生物防治学报, 2023, 39(4): 933-941.
doi: 10.16409/j.cnki.2095-039x.2023.02.042 |
Li RY, Dong KK, Yang K, et al. Biocontrol efficiency and mechanism of Bacillus tequilensis KXF 6501 against grey mold in postharvest kiwifruit[J]. Chin J Biol Contr, 2023, 39(4): 933-941. | |
[31] | 于会丽, 徐国益, 路绪强, 等. 微生物菌剂对连作西瓜土壤微环境及果实品质的影响[J]. 果树学报, 2020, 37(7): 1025-1035. |
Yu HL, Xu GY, Lu XQ, et al. Effects of microbial agents on soil microenvironment and fruit quality of watermelon under continuous cropping[J]. J Fruit Sci, 2020, 37(7): 1025-1035. | |
[32] | 刘洋洋, 束怀瑞, 陈伟. 混施微生物菌剂和有机肥对‘新红星’ 苹果解袋后果实品质的影响[J]. 中国土壤与肥料, 2021(1): 169-179. |
Liu YY, Shu HR, Chen W. Effect of organic fertilizer containing microbial inoculants on fruit quality of ‘Starkrimson’ apples after bag removal[J]. Soil and Fertilizer Sciences in China, 2021(1): 169-179. | |
[33] |
王君正, 张琪, 高子星, 等. 两种微生物菌剂对有机基质袋培秋黄瓜产量、品质及根际环境的影响[J]. 中国农业科学, 2021, 54(14): 3077-3087.
doi: 10.3864/j.issn.0578-1752.2021.14.013 |
Wang JZ, Zhang Q, Gao ZX, et al. Effects of two microbial agents on yield, quality and rhizosphere environment of autumn cucumber cultured in organic substrate[J]. Sci Agric Sin, 2021, 54(14): 3077-3087.
doi: 10.3864/j.issn.0578-1752.2021.14.013 |
|
[34] | 撒晓梅, 丁琴, 李明. 蚯蚓粪和微生物菌剂对土壤养分及红地球葡萄生理特性的影响[J]. 甘肃农业大学学报, 2023: 1-10. |
Sa XM, Ding Q, LI M. Effects of earthworm cast and microbial agents on soil nutrients and physilogical characteristics of red globe grapes[J]. Journal of Gansu Agricultural University, 2023: 1-10. | |
[35] | 鲁凯珩, 金清, 曹沁, 等. 不同微生物菌剂对田间西红柿品质以及土壤酶活性的影响[J]. 上海师范大学学报: 自然科学版, 2019, 48(2): 197-206. |
Lu KH, Jin Q, Cao Q, et al. Effects of different microbial agents on tomato quality and soil enzyme activity[J]. J Shanghai Norm Univ Nat Sci, 2019, 48(2): 197-206. | |
[36] | Zhang HJ, Wang Y, Yu SC, et al. Plant photosynthesis and dry matter accumulation response of sweet pepper to water-nitrogen coupling in cold and arid environment[J]. Water, 2023, 15(11): 2134. |
[37] |
赵忠娟, 杨凯, 扈进冬, 等. 盐胁迫条件下哈茨木霉ST02对椒样薄荷生长及根区土壤理化性质的影响[J]. 生物技术通报, 2022, 38(7): 224-235.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1251 |
Zhao ZJ, Yang K, Hu JD, et al. Effects of Trichoderma harzianum ST02 on the growth of peppermint and physicochemical properties of root zone soil under salt stress[J]. Biotechnol Bull, 2022, 38(7): 224-235. | |
[38] |
沈开勤, 刘倩, 杨国涛, 等. 减量施磷对土壤磷库组成及解磷微生物的影响[J]. 中国农业科学, 2023, 56(15): 2941-2953.
doi: 10.3864/j.issn.0578-1752.2023.15.009 |
Shen KQ, Liu Q, Yang GT, et al. Effects of phosphorus reduction on soil phosphorus pool composition and phosphorus solubilizing microorganisms[J]. Sci Agric Sin, 2023, 56(15): 2941-2953.
doi: 10.3864/j.issn.0578-1752.2023.15.009 |
|
[39] |
杨肖芳, 郭瑞, 姚燕来, 等. 微生物菌剂对连作地块草莓生长、土壤养分及微生物群落的影响[J]. 核农学报, 2023, 37(6): 1253-1262.
doi: 10.11869/j.issn.1000-8551.2023.06.1253 |
Yang XF, Guo R, Yao YL, et al. Effects of microbial agents on plant growth, soil fertility and microbial communities under continuous cropping strawberry[J]. J Nucl Agric Sci, 2023, 37(6): 1253-1262.
doi: 10.11869/j.issn.1000-8551.2023.06.1253 |
|
[40] | Usmonov A, Yoo SJ, Kim ST, et al. The Bacillus zanthoxyli HS1 strain renders vegetable plants resistant and tolerant against pathogen infection and high salinity stress[J]. Plant Pathol J, 2021, 37(1): 72-78. |
[41] | Paul GK, Mahmud S, Dutta AK, et al. Volatile compounds of Bacillus pseudomycoides induce growth and drought tolerance in wheat(Triticum aestivum L.)[J]. Sci Rep, 2022, 12: 19137. |
[42] | Solanki K, Choudhary SK, Aakash, et al. Response of Bacillus megaterium and Bacillus mucilaginosus strains on growth and nutrient uptake of soybean[J]. Int J Plant Soil Sci, 2023, 35(21): 267-276. |
[1] | LIU Chuan-he, HE Han, SHAO Xue-hua, HE Xiu-gu. Analysis of Differential Metabolites and Bacterial Community Structure in the Soils of a Pineapple Orchard under Different Mulching Treatments [J]. Biotechnology Bulletin, 2024, 40(7): 247-258. |
[2] | TIAN Sheng-ni, ZHANG Qin, DONG Yu-fei, DING Zhou, YE Ai-hua, ZHANG Ming-zhu. Effects of Acid Mine Drainage on Physicochemical Factors and Nitrogen-fixing Microorganisms in the Root Zone of Mature Rice [J]. Biotechnology Bulletin, 2024, 40(6): 271-280. |
[3] | YU Xin-lei, HE Jie-wang, LIN Guo-ping, LI Jin-hai, WANG Da-ai, YUAN Yue-bin, LIU Sheng-gao, LI Zhi-hao, TAO De-xin. Metabolome Difference Analysis of Fermented Cigar Tobacco Leaves in Summer and Winter [J]. Biotechnology Bulletin, 2024, 40(6): 260-270. |
[4] | QI Yan-xiang, XIE Yi-xian, PENG Jun, ZENG Fan-yun, ZHANG Xin. Banana Rhizosphere Microecology and Its Relationship with Fusarium Wilt Control [J]. Biotechnology Bulletin, 2024, 40(6): 57-67. |
[5] | CUI Man, SHAO Gai-ge, YANG Nuo-lin, FAN Qing-hao, ZHANG Jin-wei, TIAN Yu, ZHENG Su-yue, ZHANG Rui-ying. Research Progress in the Effects of Microorganisms on the Growth and Development of Edible Mushrooms [J]. Biotechnology Bulletin, 2024, 40(5): 13-22. |
[6] | LIU Jia-ning, LI Meng, YANG Xin-sen, WU Wei, PEI Xin-wu, YUAN Qian-hua. Impact of Different Water Management Cultivation Methods on the Rhizosphere Bacteria Community of Shanlan Upland Rice [J]. Biotechnology Bulletin, 2024, 40(3): 242-250. |
[7] | HAO Da-cheng, ZHENG Yu-wei, WANG Fan, HAN Lei, ZHANG Ze. Fungal Electrochemical Remediation of Herbicide-contaminated Soil: Preliminary Study on Degradation Kinetics [J]. Biotechnology Bulletin, 2024, 40(3): 261-272. |
[8] | CHANG Hai-xia, LI Ming-yuan, MAIRIYANGU·Yasheng , ZHOU Qian, WANG Ji-lian. Screening and Growth-promoting Characteristics of Multifunctional Exopolysaccharides-producing Bacteria [J]. Biotechnology Bulletin, 2024, 40(3): 273-285. |
[9] | FANG Tian-yi, YUE Yan-ling. Mechanisms of Root Exudates-mediated Plant Resistance to Soil-borne Diseases [J]. Biotechnology Bulletin, 2024, 40(3): 52-61. |
[10] | LI Xue, LI Rong-ou, KONG Mei-yi, HUANG Lei. The Growth Promoting Effect of Bacillus amyloliquefaciens SQ-2 on Rice [J]. Biotechnology Bulletin, 2024, 40(2): 109-119. |
[11] | GONG Li-li, YU Hua, YANG Jie, CHEN Tian-chi, ZHAO Shuang-ying, WU Yue-yan. Identification and Analysis of Grape(Vitis vinifera L.)CYP707A Gene Family and Functional Verification to Fruit Ripening [J]. Biotechnology Bulletin, 2024, 40(2): 160-171. |
[12] | LEI Mei-ling, RAO Wen-hua, HU Jin-feng, YUE Qi, WU Zu-jian, FAN Guo-cheng. Bacterial Diversity and Structure in Rhizosphere Soil of Citrus Infested with Huanglongbing [J]. Biotechnology Bulletin, 2024, 40(2): 266-276. |
[13] | FENG Lu-yao, ZHAO Jiang-yuan, SHI Zhu-feng, MO Yan-fang, YANG Tong-yu, SHEN Yun-xin, HE Fei-fei, LI Ming-gang, YANG Pei-wen. Isolation and Identification of Bacteria in Forest Rhizosphere Soil and Their Biological Activity Screening [J]. Biotechnology Bulletin, 2024, 40(1): 294-307. |
[14] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[15] | SONG Zhi-zhong, XU Wei-hua, XIAO Hui-lin, TANG Mei-ling, CHEN Jing-hui, GUAN Xue-qiang, LIU Wan-hao. Cloning, Expression and Function of Iron Regulated Transporter VvIRT1 in Wine Grape(Vitis vinifera L.) [J]. Biotechnology Bulletin, 2023, 39(8): 234-240. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||