Biotechnology Bulletin ›› 2013, Vol. 0 ›› Issue (3): 30-36.
• Reviews and Monographs • Previous Articles Next Articles
Yu Xiaoqin, Wu Yixin, He Yueqiu, Mao Zichao
Received:
2012-09-06
Revised:
2013-03-21
Online:
2013-03-20
Published:
2013-03-21
Yu Xiaoqin, Wu Yixin, He Yueqiu, Mao Zichao. Research on Curdlan Synthesized by Agrobacterium sp.ATCC31749[J]. Biotechnology Bulletin, 2013, 0(3): 30-36.
[1] Harada T, Masada M, Fujimori K, et al. Production of a firm resilient gel-forming polysaccharide by a mutant of Alcaligenes faecalis var. myxogenes 10C3[J]. Agric Biol Chem, 1966, 30 :196-198.
[2] Zhang HB, Nishinari K, Williams MAK, et al. A molecular description of the gelation mechanism of curdlan[J]. Int J Biol Macromol, 2002, 30 :7-16. [3] Laroche1 C, Michaud P. New developments and prospective applications for β(1, 3)glucans[J]. Recent Pat Biotechnol, 2007, 1(1): 59-73. 2013年第3期35 余小琴等:土壤杆菌ATCC31749 合成可德胶的研究进展 [4] Goodridge HS, Wolf AJ, Underhill DM. β-glucan recognition by the innate immune system[J]. Immunol Rev, 2009, 230 :38-50. [5] Lehtovaara BC, Gu FX. Pharmacological, structural, and drug delivery properties and applications of 1, 3-β-glucans[J]. Agric Food Chen, 2011, 59(13):6813-6828. [6] Karnezis T, Epa VC, Stone BA, et al. Topological characterization of an inner membrane(1 → 3)-β-D-glucan(curdlan)synthase from Agrobacterium sp. strain ATCC31749[J]. Glycobiology, 2003, 13(10):693-706. [7] Kim MK, Lee IY, Lee JH, et al. Residual phosphate concentration under nitrogen-limiting conditions regulates curdlan production in Agrobacterium species[J]. J Ind Microbiol Biotechnol, 2000, 25 : 180-183. [8] Yu LJ, Wu JR. Changes of curdlan biosynthesis and nitrogenous compounds utilization characterized in ntrC mutant of Agrobacterium sp. ATCC 31749[J] . Curr Microbiol, 2011, 63 :60-67. [9] 吴剑荣, 詹晓北, 刘惠, 等. 氨水流加用于粪产碱杆菌热凝胶发 酵[J]. 生物工程学报, 2008, 24(6):1035-1039. [10] Jin LH, Um HJ, Yin CJ, et al. Proteomic analysis of curdlanproducing Agrobacterium sp. in response to pH downshift[J]. Biotechnol, 2008, 138(3-4):80-87. [11] Zhang HT, Zhan XB, Zheng ZY. Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749[J]. Appl Microbiol Biotechnol, 2012, 93 :367- 379. [12] Lee JH, Lee IY. Optimization of uracil addition for curdlan(β-1 → 3-glucan)production by Agrobacterium sp.[J]. Biotechnol Lett, 2001, 23 :1131-1134. [13] Yu LJ, Wu JR Liu J, et al. Enhanced curdlan production in Agrobacterium sp. ATCC 31749 by addition of low-polyphosphates[J]. Biotechnology and Bioprocess Engineering, 2011, 16 :34-41. [14] Goodner B, Hinkle G, Gattung S. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58[J]. Journal Science, 2001, 294(5550):2323-2328. [15] Ruffing AM, Castro-Melchor M, Hu WS, et al. Genome sequence of the curdlan-producing Agrobacterium sp. strain ATCC 31749[J]. Bacteriol, 2011, 193(16):4294-4295. [16] Stasinopoulos SJ, Fisher PR, Stone BA, et al. Detection of two loci involved in(1 → 3)-beta-glucan(curdlan)biosynthesis by ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene[J]. Glycobiology, 1999, 9(1):31-41. [17] Karnezis T, Epa VC, Stone BA, et al. Topological characterization of an inner membrane(1 → 3)-beta-D-glucan(curdlan)synthase from Agrobacterium sp. strain ATCC31749[J]. Glycobiology, 2003, 13(10):693-706. [18] Zhan XB, Lin CC, Zhang HT, et al. Recent advances in curdlan biosynthesis, biotechnological production, and applications[J]. Appl Microbiol Biotechnol, 2012, 93(2):525-531. [19] Zhang HT, Setubal JC, Zhan XB, et al. Component identification of electron transport chains in curdlan-producing Agrobacterium sp. ATCC 31749 and its genome-specific prediction using comparative genome and phylogenetic trees analysis[J]. Ind Microbiol Biotechnol, 2011, 38 :667-677. [20] Dodsworth JA, Leigh JA. Nitrogen regulation in bacteria and archaea[J]. Annu.Rev Biochem, 2007, 61 :349-377. [21] Wu JR. NtrC-dependent regulatory network for curdlan biosynthesis in response to nitrogen limitation in Agrobacterium sp. ATCC 31749[J]. Process Biochemistry, 2011, 9410 :7-13. [22] Kim HS, Lee MA, Chun SJ. Role of NtrC in biofilm formation via controlling expression of the gene encoding an ADP-glyceromanno- heptose-6-epimerase in the pathogenic bacterium, Vibrio vulnificus[J]. Mol Microbiol, 2007, 63(2):559-574. [23] Ruffing AM, Chen RR. Transcriptome profiling of a curdlanproducing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesis[J]. Microbial Cell Factories, 2012, 11(1):1-13. [24] Ross P, Weinhouse H, Aloni Y, et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid[J]. Nature, 1987, 325(6101):279-281. [25] Schirmer T, Jenal U. Structural and mechanistic determinants of c-di-GMP signaling[J]. Nat Rev Microbiol, 2009, 7(10):724- 735. [26] Hickman JW, Harwood CS. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor[J]. Mol Microbiol, 2008, 69(2):376-89. [27] Kulshina N, Baird NJ, Ferré-D’Amaré AR. Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch [J]. Nat Struct Mol Biol, 2009, 16(12):1212-1217. [28] Krasteva PV, Fong JC, Shikuma NJ, et al. Vibrio cholerae VpsT 生物技术通报 Biotechnology Bulletin 2013年第3期36 regulates matrix production and motility by directly sensing cyclic di-GMP[J]. Science, 2010, 327(5967):866-868. [29] Nesper J, Reinders A, Glatter T, et al. A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins[J]. Proteomics, 2012, 75(15):4874-4878. [30] Zheng ZY, Lee J, Zhan X, et al. Effect of metabolic structures and energy requirements on curdlan production by Alcaligenes faecalis[J]. Biotechnol Bioprocess Eng, 2007, 12 :359-365. [31] Vercruysse M, Fauvart M, Jans A, et al. Stress response regulators identified through genome-wide transcriptome analysis of the(p) ppGpp-dependent response in Rhizobium etli[J]. Genome Biol, 2011, 12(2):1-19. [32] Ruffing AM, Chen RR. Citrate stimulates oligosaccharide synthesis in metabolically engineered Agrobacterium sp.[J]. Appl Biochem Biotechnol, 2011, 164(6):851-866. [33] Bacis A, Fincher GB, Stone BA. Chemistry, biochemistry, and biology of(1-3)-β-glucans and related polysaccharides[M]. USA :Academic Press is an Imprint of Elsevler, 2009 :1-209. [34] Reeve WG, Tiwari RP, Wong CM, et al. The transcriptionalregulator gene phrR in Sinorhizobium meliloti WSM419 is regulated by low pH and other stresses[J]. Microbiology, 1998, 144 :3335-3342. [35] Karnezis T, Fisher HC, Neumann GM, et al. Cloning and characterization of the phosphatidylserine synthase gene of Agrobacterium sp. strain ATCC 31749 and effect of its inactivation on production of high-molecular-mass(1 → 3)-β-D-glucan (curdlan)[J]. J Bacteriology, 2002, 184(15):4114-4123. [36] Stark BC, Dikshit KL, Pagilla KR. Recent advances in understanding the structure, function, and biotechnological usefulness of the hemoglobin from the bacterium Vitreoscilla[J]. Biotechnol Lett, 2011, 33(9):1705-1714. |
[1] | ZHANG Chan, WU You-gen, YU Jing, YANG Dong-mei, YAO Guang-long, YANG Hua-geng, ZHANG Jun-feng, CHEN Ping. Molecular Mechanism of Terpenoids Synthesis Intermediated by Light and Jasmonates Signals [J]. Biotechnology Bulletin, 2022, 38(8): 32-40. |
[2] | ZHANG Feng, CHEN Wei. Research Progress of Metabolomics in Plant Stress Biology [J]. Biotechnology Bulletin, 2021, 37(8): 1-11. |
[3] | QIAN Hong-ping, CHEN Bo, LIN Jin-xing, CUI Ya-ning. Recent Advances on Dynamic Regulation and Imaging Techniques of RNA Polymerase II [J]. Biotechnology Bulletin, 2021, 37(4): 293-302. |
[4] | LI Ze-qing, LIU Cai-xian, XING Wen, WEN Ya-feng. Research Progress on Regulation of miRNA in the Heat Stress Response of Plants [J]. Biotechnology Bulletin, 2020, 36(2): 149-157. |
[5] | ZHENG Wen-qing, ZHANG Qian, DU Liang. Short Tandem Target Mimic and Its Application in Analyzing Plant miRNA Functions [J]. Biotechnology Bulletin, 2020, 36(12): 256-264. |
[6] | CHANG Yong-fang, BAO Peng-jia, CHU Min, WU Xiao-yun, LIANG Chun-nian, YAN Ping. Research Progress on the Regulation of LncRNA in the Development of Mammalian Hair Follicle [J]. Biotechnology Bulletin, 2019, 35(8): 205-212. |
[7] | MO Xian-lan, SHI Lie-qin, LU Qiu-li, WANG Xiao-min, REN Zhen-xin. Expression Analysis of Sl-miR482 in Tomato Fruit and the Construction of STTM Silencing Vector [J]. Biotechnology Bulletin, 2019, 35(12): 50-56. |
[8] | HUANG Xing, DING Feng, PENG Hong-xiang, PAN Jie-chun, HE Xin-hua, XU Jiong-zhi, LI Lin. Research Progress on Family of Plant WRKY Transcription Factors [J]. Biotechnology Bulletin, 2019, 35(12): 129-143. |
[9] | TAN Yu-rong, WANG Dan, GAO Xuan, LIU Jin-ping. Research Advance on Plant Long Noncoding RNAs [J]. Biotechnology Bulletin, 2018, 34(10): 1-10. |
[10] | MIAO Hong-xia, SUN Pei-guang, ZHANG Kai-xing, JIN Zhi-qiang, XU Bi-yu. Research Progress on Expression Regulation Mechanism of Genes Encoding Granule-bound Starch Synthase in Plants [J]. Biotechnology Bulletin, 2016, 32(3): 18-23. |
[11] | Zhang Peng. Trends and Prospect of Basic Research on Root and Tuber Crops #br#in China [J]. Biotechnology Bulletin, 2015, 31(4): 65-71. |
[12] | Niu Yali, Zhao Qian, Zhang Xiaohan, Ai Qiushi, Song Shuishan. Research Progress on the Role and Regulation Mechanism of Gibberellin Signal in Response to Abiotic Stress [J]. Biotechnology Bulletin, 2015, 31(10): 31-37. |
[13] | Jiang Shanshan, Zhang Dan, Kong Xiangpei, Zhou Yan, Li Dequan. Research Progress of Structural Characteristics and Functions of Calcium-dependent Protein Kinases in Plants [J]. Biotechnology Bulletin, 2013, 0(6): 12-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||