Biotechnology Bulletin ›› 2013, Vol. 0 ›› Issue (3): 37-43.
• Reviews and Monographs • Previous Articles Next Articles
Li Junxia, Zhang Rijun, Chen Dongdong
Received:
2012-02-10
Revised:
2013-03-21
Online:
2013-03-20
Published:
2013-03-21
Li Junxia, Zhang Rijun, Chen Dongdong. Research Progress of Clostridium cellulovorans Cellulosome[J]. Biotechnology Bulletin, 2013, 0(3): 37-43.
[1] Doi RH, Kosugi A. Cellulosomes :plant-cell-wall-degrading enzyme complexes[J]. Nat Rev Microbiol, 2004, 2(7):541-551.
[2] Doi RH, Kosugi A, Murashima K, et al. Cellulosomes from mesophilic bacteria[J]. J Bacteriol, 2003, 185(20):5907. [3] Ding SY, Bayer EA, Steiner D, et al. A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins[J]. Journal of Bacteriology, 2000, 182(17):4915. [4] Sleat R, Mah RA, Robinson R. Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov[J]. Appli Environ Microbiol, 1984, 48(1):88. [5] Lamed R, Setter E, Bayer EA. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum[J]. Journal of Bacteriology, 1983, 156(2):828. [6] Pages S, Belaich A, Belaich JP, et al. Species-specificity of the cohesin- dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum :Prediction of specificity determinants of the dockerin domain[J]. Proteins, 1997, 29(4):517-527. [7] Kakiuchi M, Isui A, Suzuki K, et al. Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome[J]. J Bacteriol, 1998, 180(16): 4303. [8] Pohlschroder M, Leschine SB, Canale-Parola E. Multicomplex cellulase-xylanase system of Clostridium papyrosolvens C7[J]. Journal of Bacteriology, 1994, 176(1):70. [9] Ding SY, Rincon MT, Lamed R, et al. Cellulosomal scaffoldinlike proteins from Ruminococcus flavefaciens[J]. Journal of Bacteriology, 2001, 183(6):1945. [10] Ohara H, Karita S, Kimura T, et al. Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus[J]. Biosci, Biotechnol Biochem, 2000, 64(2):254-260. [11] Doi RH, Tamaru Y. The Clostridium cellulovorans cellulosome : an enzyme complex with plant cell wall degrading activity[J]. Chemical Record, 2001, 1(1):24-32. [12] Fontes CM, Gilbert HJ . Cellulosomes :highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates[J]. Annu Rev Biochem, 2010, 79 :655-681. [13] Doi RH. Cellulases of mesophilic microorganisms :cellulosome and noncellulosome producers[J]. Annals of the New York Academy of Sciences, 2008, 1125(1):267-279. [14] Shoseyov O, Takagi M, Goldstein MA, et al. Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A[J]. Proc Nat Acad Sci USA, 1992, 89(8):3483. [15] Goldstein MA, Takagi M, Hashida S, et al. Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulosebinding protein A[J]. J Bacteriol, 1993, 175(18):5762. [16] Park JS, Matano Y, Doi RH. Cohesin-dockerin interactions of cellulosomal subunits of Clostridium cellulovorans[J]. Journal of Bacteriology, 2001, 183(18):5431. [17] Matsuoka S, Yukawa H, Inui M, et al. Synergistic Interaction of Clostridium cellulovorans Cellulosomal Cellulases and HbpA[J]. Journal of Bacteriology, 2007, 189(20):7190. [18] Tamaru Y, Doi RH. Three surface layer homology domains at the N terminus of the Clostridium cellulovorans major cellulosomal subunit EngE[J]. J Bacteriol, 1999, 181(10):3270. [19] Tamaru Y, Doi RH. Pectate lyase A, an enzymatic subunit of the Clostridium cellulovorans cellulosome[J]. Proceedings of the National Academy of Sciences, 2001, 98(7):4125. [20] Kosugi A, Murashima K, Doi RH. Xylanase and acetyl xylan esterase activities of XynA, a key subunit of the Clostridium cellulovorans cellulosome for xylan degradation[J]. Applied and Environmental Microbiology, 2002, 68(12):6399. [21] Han SO, Yukawa H, Inui M, et al. Isolation and expression of the xynB gene and its product, XynB, a consistent component of the Clostridium cellulovorans cellulosome[J]. Journal of Bacteriology, 2004, 186(24):8347. [22] Jeon SD, Yu KO, Kim SW, et al. The processive endoglucanase EngZ is active in crystalline cellulose degradation as a cellulosomal subunit of Clostridium cellulovorans[J]. New Biotechnology, 2012, 29 (3):365-371. [23] Foong F, Doi R. Characterization and comparison of Clostridium cellulovorans endoglucanases-xylanases EngB and EngD hyperexpressed in Escherichia coli[J]. J Bacteriol, 1992, 174(4): 1403. [25] Tamaru Y, Karita S, Ibrahim A, et al. A large gene cluster for the Clostridium cellulovorans cellulosome[J]. Journal of Bacteriology, 2000, 182(20):5906. [26] Han SO, Yukawa H, Inui M, et al. Regulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovorans [J]. Journal of Bacteriology, 2003, 185(20):6067. [27] Bayer EA, Belaich JP, Shoham Y, et al. The cellulosomes :multienzyme machines for degradation of plant cell wall polysaccharides [J]. Annual Review of Microbiology, 2004, 58 :521-554. 2013年第3期43 李俊霞等:嗜纤维梭菌纤维体研究进展 [28] Cho W, Jeon SD, Shim HJ, et al. Cellulosomic profiling produced by Clostridium cellulovorans during growth on different carbon sources explored by the cohesin marker[J]. Journal of Biotechnology, 2010, 145(3):233-239. [29] Han SO, Cho HY, Yukawa H, et al. Regulation of expression of cellulosomes and noncellulosomal (hemi) cellulolytic enzymes in Clostridium cellulovorans during growth on different carbon sources[J]. Journal of Bacteriology, 2004, 186(13):4218. [30] Murashima K, Kosugi A, Doi RH. Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans[J]. J Bacteriol, 2002, 184(18):5088. [31] Murashima K, Kosugi A, Doi RH. Synergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation[J]. J Bacteriol, 2003, 185(5):1518. [32] Koukiekolo R, Cho HY, Kosugi A, et al. Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA[J]. Applied and Environmental Microbiology, 2005, 71(7):3504. [33] Kosugi A, Murashima K, Doi RH. Characterization of two noncellulosomal subunits, ArfA and BgaA, from Clostridium cellulovorans that cooperate with the cellulosome in plant cell wall degradation [J]. Journal of Bacteriology, 2002, 184(24):6859. [34] Jeon SD, Yu KO, Kim SW, et al. A celluloytic complex from Clostridium cellulovorans consisting of mannanase B and endoglucanase E has synergistic effects on galactomannan degradation[J]. Applied Microbiology and Biotechnology, 2011, 90 :565-572. [35] Murashima K, Chen CL, Kosugi A, et al. Heterologous production of Clostridium cellulovorans engB, using protease-deficient Bacillus subtilis, and preparation of active recombinant cellulosomes[J]. Journal of Bacteriology, 2002, 184(1):76. [36] Cho HY, Yukawa H, Inui M, et al. Production of minicellulosomes from Clostridium cellulovorans in Bacillus subtilis WB800[J]. Applied and Environmental Microbiology, 2004, 70(9):5704. [37] Lilly M, Fierobe HP, Van Zyl WH, et al. Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae[J]. Fems Yeast Research, 2009, 9(8):1236-1249. [38] Hyeon J, Yu KO, Suh DJ, et al. Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae[J]. Fems Microbiology Letters, 2010, 310(1):39-47. [39] Jeon E, Sung EL, Park BS, et al. Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovorans endoglucanase and Saccharomycopsis fibuligeraβ-glucosidase[J]. Fems Microbiology Letters, 2009, 301(1):130-136. [40] Murashima K, Kosugi A, Doi RH. Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD[J]. Molecular Microbiology, 2002, 45(3):617-626. [41] Lee CY, Yu KO, Kim SW, et al. Enhancement of the thermostability and activity of mesophilic Clostridium cellulovorans EngD by in vitro DNA recombination with Clostridium thermocellum CelE[J]. J Bioscience and Bioeng, 2010, 109(4):331-336. [42] Tamaru Y, Miyake H, Kuroda K, et al. Genome sequence of the cellulosome- producing mesophilic organism Clostridium cellulovorans 743B[J]. Journal of Bacteriology, 2010, 192(3):901. [43] Tamaru Y, Miyake H, Kuroda K, et al. Comparative genomics of the mesophilic cellulosome-producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing [J]. Environmental Technology, 2010, 31(8-9):889-903. [44] Meguro H, Morisaka H, Kuroda K, et al. Putative role of cellulosomal protease inhibitors in Clostridium cellulovorans by their gene expression and measurement of the activities[J]. Journal of Bacteriology, 2011, 193(19):5527-5530. |
[1] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[2] | SUN Jing-ya, MA Yu-chao. Functions of Arsenic-resistant Gene Cluster in Pseudomonas sp. Tw224 [J]. Biotechnology Bulletin, 2022, 38(1): 141-149. |
[3] | CAI Guo-lei, LU Xiao-kai, LOU Shui-zhu, YANG Hai-ying, DU Gang. Classification and Identification of Bacillus LM Based on Whole Genome and Study on Its Antibacterial Principle [J]. Biotechnology Bulletin, 2021, 37(8): 176-185. |
[4] | ZHANG De-rong, MA Xiao-xia, LI Yu-fei, ZHAO Yong-qing, HUO Sheng-dong, MA Zhong-ren, BAI Jia-lin. Research Progress and Prospects of Adiponectin and Its Receptor in Mammal [J]. Biotechnology Bulletin, 2020, 36(6): 236-244. |
[5] | BAI Jin-ming, ZHAO Zi-xiang, QIN Jia-chen, LIU Jian-hui, LIANG Ai-bo. Effects of Tobacco Extracts on the Lifespan of Drosophila melanogaster and Related Gene Transcription [J]. Biotechnology Bulletin, 2020, 36(3): 162-167. |
[6] | ZHAO Jiang-hua, FANG Huan, ZHANG Da-wei. Research Progress in Biosynthesis of Secondary Metabolites of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(11): 141-147. |
[7] | QIAN Wen-jiang, WANG Bu-qing, LI Wei-xi, YANG Xue-miao, LIU Hong-wei, ZHANG Li-ping. Secondary Metabolic Pathway Mining and Pan-genome Analysis of Bacillus coagulans [J]. Biotechnology Bulletin, 2020, 36(10): 88-98. |
[8] | TIAN Wen-jia, DOU Gui-ming, WANG Sha, SUN Jing-ya, MA Yu-chao. Establishment of a CRISPR/Cas9-mediated Gene Cluster-knockout System in the Endophytic Streptomyces SAT1 [J]. Biotechnology Bulletin, 2019, 35(6): 1-8. |
[9] | QI Jia-ming, SUN Shan-shan, ZHANG Dong-xu, XU Zhi-wen, XU Yan-ping. Identification and Biocontrol Activity Analysis of Bacillus sp. BS-6 Based on Genome-wide Data [J]. Biotechnology Bulletin, 2019, 35(10): 111-118. |
[10] | PANG Qing-xiao, LIANG Quan-feng, QI Qing-sheng. Application of Switch for Synthetic Biology in Metabolic Engineering [J]. Biotechnology Bulletin, 2017, 33(1): 58-64. |
[11] | Lü Huanqing, Wang Zhimin, Tang Qinglin, Tian Shibing, Wang Yongqing, Song Ming. Polyamine Biosynthesis Enzyme Research Progress in Two Key Genes [J]. Biotechnology Bulletin, 2015, 31(2): 61-64. |
[12] |
Chen Hongwei, Li Yinglun |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||