生物技术通报 ›› 2015, Vol. 31 ›› Issue (4): 72-81.doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.006
许锴,陈霞,高绍荣
收稿日期:
2015-01-03
出版日期:
2015-04-22
发布日期:
2015-04-22
作者简介:
作者简介:许锴,男,硕士研究生,研究方向:干细胞与表观遗传学;E-mail:xukai_0925@163.comXu Kai Chen Xia Gao Shaorong
Received:
2015-01-03
Published:
2015-04-22
Online:
2015-04-22
摘要: 关于细胞重编程问题的探讨可以追溯至20世纪30年代。从汉斯·斯佩曼提出“胚胎诱导”概念开始,到20世纪60年代,约翰·戈登成功获得了经过体细胞核移植发育而来的爪蟾,再到1996年世界首例克隆哺乳动物克隆羊“多莉”的诞生,生物学家终于证实了高等动物的体细胞核能够通过核移植的方式重新建立多能性,但这一方法面临着很多社会伦理学问题,无法应用于医学实践。直到2006年Yamanaka小组诱导多能干细胞(Induced pluripotent stem cells,iPS 细胞),成功地绕过了这些伦理问题,诱导重编程才成为了当今干细胞生物学最为热门的研究方向。在诱导多能干细胞领域,我国一直位居世界前列,近年来更是在iPS技术的优化、机制研究和应用研究等方面作出了令世界瞩目的贡献,就这几方面做一综述。
许锴,陈霞,高绍荣. 我国诱导多能干细胞研究进展[J]. 生物技术通报, 2015, 31(4): 72-81.
Xu Kai, Chen Xia, Gao Shaorong. The Progress of Induced Pluripotent Stem Cells Research in China[J]. Biotechnology Bulletin, 2015, 31(4): 72-81.
[1] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126:663-676. [2] Liu HS, Zhu FF, Yonge J, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J]. Cell Stem Cell, 2008, 3(6):587-590. [3] Li WL, Wei W, Zhu SY, et al. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors[J]. Cell Stem Cell, 2009, 4(1):16-19. [4] Wu Z, Chen JJ, Ren JT, et al. Generation of pig induced pluripotent stem cells with a drug-inducible system[J]. J Mol Cell Biol, 2009, 1(1):46-54. [5] Esteban MA, Xu JY, Yang JY, et al. Generation of induced pluripotent stem cell lines from Tibetan miniature pig[J]. J Biol Chem, 2009, 284(26):17634-17640. [6] Li CL, Yu HY, Ma Y, et al. Germline-competent mouse-induced pluripotent stem cell lines generated on human fibroblasts without exogenous leukemia inhibitory factor[J]. PLoS One, 2009, 4(8):e6724. [7] Wang YX, Jiang YH, Liu S, et al. Generation of induced pluripotent stem cells from human β-thalassemia fibroblast cells[J]. Cell Res, 2009, 19(9):1120-1123. [8] Kang L, Wang JL, Zhang Y, et al. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos[J]. Cell Stem Cell, 2009, 5(2):135-138. [9] Zhao XY, Li W, Lv Z, et al. iPS cells produce viable mice through tetraploid complementation[J]. Nature, 2009, 461(7260):86-90. [10] Zhang DH, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells[J]. Cell Res, 2009, 19(4):429-438. [11] Song ZH, Cai J, Liu YX, et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells[J]. Cell Res, 2009, 19(11):1233-1242. [12] Stadtfeld M, Apostolou E, Akutsu H, et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells[J]. Nature, 2010, 465(7295):175-181. [13] Chen J, Liu J, Yang J, et al. BMPs functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone[J]. Cell Res, 2011, 21(1):205-212. [14] Heng JC, Feng B, Han J, et al. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells[J]. Cell Stem Cell, 2010, 6(2):167-174. [15] Wu G, Han D, Gong Y, et al. Establishment of totipotency does not depend on Oct4A[J]. Nat Cell Biol, 2013, 15(9):1089-1097. [16] Gao Y, Chen J, Li K, et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming[J]. Cell Stem Cell, 2013, 12(4):453-469. [17] Chen J, Gao Y, Huang H, et al. The combination of Tet1 with Oct4 generates high-quality mouse induced pluripotent stem cells(iPSCs)[J]. Stem Cells, 2015, 33(3):686-698. [18] Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration[J].Science, 2008, 322(5903):945-949. [19] Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors[J]. Science, 2008, 322(5903):949-953. [20] Kaji K, Norrby K, Paca A, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors[J]. Nature, 2009, 458(7239):771-775. [21] Woltjen K, Michael IP, Mohseni P, et al. PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells[J]. Nature, 2009, 458(7239):766-770. [22] Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins[J].Cell Stem Cell, 2009, 4(5):381-384. [23] Kim D, Kim C, Moon J, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins[J]. Cell Stem Cell, 2009, 4(6):472-476. [24] Yakubov E, Rechavi G, Rozenblatt S, et al. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors[J]. Biochem Biophys Res Commun, 2010, 394:189-193. [25] Miyoshi N, Ishii H, Nagano H, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs[J]. Cell Stem Cell, 2011, 8(6):633-638. [26] Wu S, Wu Y, Zhang X, Capecchi MR. Efficient germ-line transmission obtained with transgene-free induced pluripotent stem cells[J]. Proc Natl Acad Sci USA, 2014, 111(29):10678-10683. [27] Le R, Kou Z, Jiang Y, et al. Enhanced telomere rejuvenation in pluripotent cells reprogrammed via nuclear transfer relative to induced pluripotent stem cells[J]. Cell Stem Cell, 2014, 14(1):27-39. [28] Wakayama S, Jakt ML, Suzuki M, et al. Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts[J]. Stem Cells, 2006, 24:2023-2033. [29] Hanna J, Saha K, Pando B, et al. Direct cell reprogramming is a stochastic process amenable to acceleration[J]. Nature, 2009, 462:595-601. [30] Assou S, Cerecedo D, Tondeur S, et al. A gene expression signature shared by human mature oocytes and embryonic stem cells[J]. BMC Genomics, 2009, 10:10. [31] Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells[J]. Nature, 2010, 467:285-290. [32] Miyamoto K, Teperek M, Yusa K, et al. Nuclear Wave1 is required for reprogramming transcription in oocytes and for normal development[J]. Science, 2013, 341:1002-1005. [33] Gonzalez-Mu?oz E, Arboleda-Estudillo Y, Otu HH, et al. Histone chaperone ASF1A is required for maintenance of pluripotency and cellular reprogramming[J]. Science, 2014, 345(6198):822-825. [34] Liu W, Yin J, Kou X, et al. Asymmetric reprogramming capacity of parental pronuclei in mouse zygotes[J]. Cell Rep, 2014, 6(6):1008-1016. [35] Silva J, Barrandon O, Nichols J, et al. Promotion of reprogramming to ground state pluripotency by signal inhibition[J]. PLoS Biol, 2008, 6:e253. [36] Ichida J, Blanchard J, Lam K, et al. A small-molecule inhibitor of TGF-beta signaling replaces Sox2 in reprogramming by inducing Nanog[J]. Cell Stem Cell, 2009, 5(5):491-503. [37] Maherali N, Hochedlinger K. TGFbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc[J]. Curr Biol, 2009, 19:1718-1723. [38] Lyssiotis C, Foreman RK, Staerk J, et al. Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4[J]. Proc Natl Acad Sci USA, 2009, 106:8912-8917. [39] Chen T, Shen L, Yu J, et al. Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells[J]. Aging Cell, 2011, 10:908-911. [40] Huangfu D, Maehr R, Guo W, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds[J]. Nat Biotechnol, 2008, 26:795-797. [41] Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2[J]. Nat Biotechnol, 2008, 26:1269-1275. [42] Li W, Zhou H, Abujarour R, et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2[J]. Stem Cells, 2009, 27:2992-3000. [43] Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds[J]. Science, 2013, 341:651-654. [44] Li Y, Zhang Q, Yin X, et al. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules[J]. Cell Res, 2011, 21(1):196-204. [45] Yuan X, Wan H, Zhao X, et al. Combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts[J]. Stem Cells, 2011, 29(3):549-553. [46] Allis CD, Jenuwein T, Reinberg D. Epigenetics[M]. New York:Cold Spring Harbor Laboratory Press, 2007:502-510. [47] Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development:reprogramming and beyond[J]. Nat Rev Genet, 2008, 9(2):129-140. [48] Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons[J]. Cell, 2012, 149(7):1635-1646. [49] Singhal N, Graumann, J, Wu G, et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming[J]. Cell, 2010, 141:943-955. [50] Ding J, Xu H, Faiola F, et al. Oct4 links multiple epigenetic pathways to the pluripotency network[J]. Cell Res, 2012, 22:155-167. [51] Zhang H, Jiao W, Sun L, et al. Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming[J]. Cell Stem Cell, 2013, 13(1):30-35. [52] Wang L, Du Y, Ward JM, et al. INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development[J]. Cell Stem Cell, 2014, 14(5):575-591. [53] Polo JM, Anderssen E, Walsh RM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells[J]. Cell, 2012, 151:1617-1632. [54] Mikkelsen TS, Hanna J, Zhang X, et al. Dissecting direct reprogramming through integrative genomic analysis[J]. Nature, 2008, 454:49-55. [55] Bhutani N, Brady JJ, Damian M, et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation[J]. Nature, 2010, 463:1042-1047. [56] Hu X, Zhang L, Mao SQ, et al. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming[J]. Cell Stem Cell, 2014, 14(4):512-522. [57] Wu T, Liu Y, Wen D, et al. Histone variant H2A. X deposition pattern serves as a functional epigenetic mark for distinguishing the developmental potentials of iPSCs[J]. Cell Stem Cell, 2014, 15 (3):281-294. [58] Chen J, Guo L, Zhang L, et al. Vitamin C modulates TET1 function during somatic cell reprogramming[J]. Nat Genet, 2013, 45:1504-1509. [59] Riddell J, Gazit R, Garrison BS, et al. Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors[J]. Cell, 2014, 157(3):549-564. [60] Du Y, Wang J, Jia J, et al. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming[J]. Cell Stem Cell, 2014, 14(3):394-403. [61] Huang P, Zhang L, Gao Y, et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes[J]. Cell Stem Cell, 2014, 14(3):370-384. [62] Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339:823-826. |
[1] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[2] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[3] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[4] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
[5] | 曾虹, 曾睿琳, 付伟, 吉文汇, 兰道亮. 牛诱导多能干细胞的建立及应用研究进展[J]. 生物技术通报, 2023, 39(5): 130-141. |
[6] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[7] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[8] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[9] | 崔吉洁, 蔡文波, 庄庆辉, 高爱平, 黄建峰, 陈亚辉, 宋志忠. 杧果Fe-S簇装配基因MiISU1的生物学功能[J]. 生物技术通报, 2023, 39(2): 139-146. |
[10] | 李凯航, 王浩臣, 程可心, 杨艳, 金一, 何晓青. 全基因组关联分析研究植物与微生物组的互作遗传机制[J]. 生物技术通报, 2023, 39(2): 24-34. |
[11] | 罗宁, 焦阳, 茆振川, 李惠霞, 谢丙炎. 木霉菌对根结线虫和孢囊线虫防治机理研究进展[J]. 生物技术通报, 2023, 39(2): 35-50. |
[12] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[13] | 王晨宇, 周楚源, 何堤, 樊梓豪, 王梦梦, 杨柳燕. 多聚磷酸盐在微生物抗环境胁迫中的作用及机制[J]. 生物技术通报, 2023, 39(11): 168-181. |
[14] | 齐方婷, 黄河. 观赏植物花斑形成调控机制的研究进展[J]. 生物技术通报, 2023, 39(10): 17-28. |
[15] | 刘佳欣, 张会龙, 邹荣松, 杨秀艳, 朱建峰, 张华新. 不同类型盐生植物适应盐胁迫的生理生长机制及Na+逆向转运研究进展[J]. 生物技术通报, 2023, 39(1): 59-72. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 157
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 344
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||