[1] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126:663-676. [2] Liu HS, Zhu FF, Yonge J, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J]. Cell Stem Cell, 2008, 3(6):587-590. [3] Li WL, Wei W, Zhu SY, et al. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors[J]. Cell Stem Cell, 2009, 4(1):16-19. [4] Wu Z, Chen JJ, Ren JT, et al. Generation of pig induced pluripotent stem cells with a drug-inducible system[J]. J Mol Cell Biol, 2009, 1(1):46-54. [5] Esteban MA, Xu JY, Yang JY, et al. Generation of induced pluripotent stem cell lines from Tibetan miniature pig[J]. J Biol Chem, 2009, 284(26):17634-17640. [6] Li CL, Yu HY, Ma Y, et al. Germline-competent mouse-induced pluripotent stem cell lines generated on human fibroblasts without exogenous leukemia inhibitory factor[J]. PLoS One, 2009, 4(8):e6724. [7] Wang YX, Jiang YH, Liu S, et al. Generation of induced pluripotent stem cells from human β-thalassemia fibroblast cells[J]. Cell Res, 2009, 19(9):1120-1123. [8] Kang L, Wang JL, Zhang Y, et al. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos[J]. Cell Stem Cell, 2009, 5(2):135-138. [9] Zhao XY, Li W, Lv Z, et al. iPS cells produce viable mice through tetraploid complementation[J]. Nature, 2009, 461(7260):86-90. [10] Zhang DH, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells[J]. Cell Res, 2009, 19(4):429-438. [11] Song ZH, Cai J, Liu YX, et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells[J]. Cell Res, 2009, 19(11):1233-1242. [12] Stadtfeld M, Apostolou E, Akutsu H, et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells[J]. Nature, 2010, 465(7295):175-181. [13] Chen J, Liu J, Yang J, et al. BMPs functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone[J]. Cell Res, 2011, 21(1):205-212. [14] Heng JC, Feng B, Han J, et al. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells[J]. Cell Stem Cell, 2010, 6(2):167-174. [15] Wu G, Han D, Gong Y, et al. Establishment of totipotency does not depend on Oct4A[J]. Nat Cell Biol, 2013, 15(9):1089-1097. [16] Gao Y, Chen J, Li K, et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming[J]. Cell Stem Cell, 2013, 12(4):453-469. [17] Chen J, Gao Y, Huang H, et al. The combination of Tet1 with Oct4 generates high-quality mouse induced pluripotent stem cells(iPSCs)[J]. Stem Cells, 2015, 33(3):686-698. [18] Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration[J].Science, 2008, 322(5903):945-949. [19] Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors[J]. Science, 2008, 322(5903):949-953. [20] Kaji K, Norrby K, Paca A, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors[J]. Nature, 2009, 458(7239):771-775. [21] Woltjen K, Michael IP, Mohseni P, et al. PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells[J]. Nature, 2009, 458(7239):766-770. [22] Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins[J].Cell Stem Cell, 2009, 4(5):381-384. [23] Kim D, Kim C, Moon J, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins[J]. Cell Stem Cell, 2009, 4(6):472-476. [24] Yakubov E, Rechavi G, Rozenblatt S, et al. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors[J]. Biochem Biophys Res Commun, 2010, 394:189-193. [25] Miyoshi N, Ishii H, Nagano H, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs[J]. Cell Stem Cell, 2011, 8(6):633-638. [26] Wu S, Wu Y, Zhang X, Capecchi MR. Efficient germ-line transmission obtained with transgene-free induced pluripotent stem cells[J]. Proc Natl Acad Sci USA, 2014, 111(29):10678-10683. [27] Le R, Kou Z, Jiang Y, et al. Enhanced telomere rejuvenation in pluripotent cells reprogrammed via nuclear transfer relative to induced pluripotent stem cells[J]. Cell Stem Cell, 2014, 14(1):27-39. [28] Wakayama S, Jakt ML, Suzuki M, et al. Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts[J]. Stem Cells, 2006, 24:2023-2033. [29] Hanna J, Saha K, Pando B, et al. Direct cell reprogramming is a stochastic process amenable to acceleration[J]. Nature, 2009, 462:595-601. [30] Assou S, Cerecedo D, Tondeur S, et al. A gene expression signature shared by human mature oocytes and embryonic stem cells[J]. BMC Genomics, 2009, 10:10. [31] Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells[J]. Nature, 2010, 467:285-290. [32] Miyamoto K, Teperek M, Yusa K, et al. Nuclear Wave1 is required for reprogramming transcription in oocytes and for normal development[J]. Science, 2013, 341:1002-1005. [33] Gonzalez-Mu?oz E, Arboleda-Estudillo Y, Otu HH, et al. Histone chaperone ASF1A is required for maintenance of pluripotency and cellular reprogramming[J]. Science, 2014, 345(6198):822-825. [34] Liu W, Yin J, Kou X, et al. Asymmetric reprogramming capacity of parental pronuclei in mouse zygotes[J]. Cell Rep, 2014, 6(6):1008-1016. [35] Silva J, Barrandon O, Nichols J, et al. Promotion of reprogramming to ground state pluripotency by signal inhibition[J]. PLoS Biol, 2008, 6:e253. [36] Ichida J, Blanchard J, Lam K, et al. A small-molecule inhibitor of TGF-beta signaling replaces Sox2 in reprogramming by inducing Nanog[J]. Cell Stem Cell, 2009, 5(5):491-503. [37] Maherali N, Hochedlinger K. TGFbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc[J]. Curr Biol, 2009, 19:1718-1723. [38] Lyssiotis C, Foreman RK, Staerk J, et al. Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4[J]. Proc Natl Acad Sci USA, 2009, 106:8912-8917. [39] Chen T, Shen L, Yu J, et al. Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells[J]. Aging Cell, 2011, 10:908-911. [40] Huangfu D, Maehr R, Guo W, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds[J]. Nat Biotechnol, 2008, 26:795-797. [41] Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2[J]. Nat Biotechnol, 2008, 26:1269-1275. [42] Li W, Zhou H, Abujarour R, et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2[J]. Stem Cells, 2009, 27:2992-3000. [43] Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds[J]. Science, 2013, 341:651-654. [44] Li Y, Zhang Q, Yin X, et al. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules[J]. Cell Res, 2011, 21(1):196-204. [45] Yuan X, Wan H, Zhao X, et al. Combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts[J]. Stem Cells, 2011, 29(3):549-553. [46] Allis CD, Jenuwein T, Reinberg D. Epigenetics[M]. New York:Cold Spring Harbor Laboratory Press, 2007:502-510. [47] Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development:reprogramming and beyond[J]. Nat Rev Genet, 2008, 9(2):129-140. [48] Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons[J]. Cell, 2012, 149(7):1635-1646. [49] Singhal N, Graumann, J, Wu G, et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming[J]. Cell, 2010, 141:943-955. [50] Ding J, Xu H, Faiola F, et al. Oct4 links multiple epigenetic pathways to the pluripotency network[J]. Cell Res, 2012, 22:155-167. [51] Zhang H, Jiao W, Sun L, et al. Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming[J]. Cell Stem Cell, 2013, 13(1):30-35. [52] Wang L, Du Y, Ward JM, et al. INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development[J]. Cell Stem Cell, 2014, 14(5):575-591. [53] Polo JM, Anderssen E, Walsh RM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells[J]. Cell, 2012, 151:1617-1632. [54] Mikkelsen TS, Hanna J, Zhang X, et al. Dissecting direct reprogramming through integrative genomic analysis[J]. Nature, 2008, 454:49-55. [55] Bhutani N, Brady JJ, Damian M, et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation[J]. Nature, 2010, 463:1042-1047. [56] Hu X, Zhang L, Mao SQ, et al. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming[J]. Cell Stem Cell, 2014, 14(4):512-522. [57] Wu T, Liu Y, Wen D, et al. Histone variant H2A. X deposition pattern serves as a functional epigenetic mark for distinguishing the developmental potentials of iPSCs[J]. Cell Stem Cell, 2014, 15 (3):281-294. [58] Chen J, Guo L, Zhang L, et al. Vitamin C modulates TET1 function during somatic cell reprogramming[J]. Nat Genet, 2013, 45:1504-1509. [59] Riddell J, Gazit R, Garrison BS, et al. Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors[J]. Cell, 2014, 157(3):549-564. [60] Du Y, Wang J, Jia J, et al. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming[J]. Cell Stem Cell, 2014, 14(3):394-403. [61] Huang P, Zhang L, Gao Y, et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes[J]. Cell Stem Cell, 2014, 14(3):370-384. [62] Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339:823-826. |