[1]孙晓庆, 董树刚. 生物饵料在水产养殖中的综合应用现状[J]. 齐鲁渔业, 2006, 23(10):31-33.
[2]Neori A. “Green water” microalgae:the leading sector in world aquaculture[J]. J Appl Phycol, 2011, 23(1):143-149.
[3]Chauton MS, Reitan KI, Norsker NH, et al. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed:Research challenges and possibilities[J]. Aquaculture, 2015, 436:95-103.
[4]Guo Z, Liu Y, Guo H, et al. Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production[J]. J Environm Sci, 2013, 25:S85-S88.
[5]Brown MR, Jeffrey SW, Volkman JK, et al. Nutritional properties of microalgae for mariculture[J]. Aquaculture, 1997, 151(1-4):315-331.
[6]陈自强, 鹿寿, 廖一波. 微藻饵料对双壳贝类幼体生长影响的研究进展[J]. 科技通报, 2013, 29(7):46-67.
[7]史会来, 楼宝, 毛国民, 等. 不同饵料对舟山牙鲆仔稚鱼生长发育及存活的影响[J]. 上海水产大学学报, 2008, 17:680-683.
[8]卢庆萍. 微藻可作为ω-3脂肪酸的新来源[J]. 国外畜牧科技, 1997, 24(2):25-30.
[9]Sheard NF. Fish consumption and risk of sudden cardiac death[J]. Nutr Rev, 1998, 56(6):177-179.
[10]于道德, 郑永允, 官曙光, 等. 微藻在海水鱼类苗种培育过程中的作用[J]. 海洋通报, 2010, 29(2):235-240.
[11]Glencross BD. Exploring the nutritional demand for essential fatty acids by aquaculture species[J]. Rev Aquacult, 2009, 1(2):71-124.
[12]钟菲, 黎慧, 仲霞铭, 等. 四种饵料微藻对海水养殖水体N_P的去除研究[J]. 环境科学与技术, 2009, 34(11):113-117.
[13]沈南南, 李纯厚, 贾晓平, 等. 小球藻与芽孢杆菌对对虾养殖水质调控作用的研究[J]. 海洋水产研究, 2008, 29:48-52.
[14]Muller-Feuga A. The role of microalgae in aquaculture:situation and trends[J]. J Appl Phycol, 2000, 12(3-5):527-534.
[15]高桂玲, 成家杨. 雨生红球藻和虾青素的研究[J]. 水产学报, 2014, 38(2):297-304.
[16]Raposo MF, de Morais AM, de Morais RM. Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum[J]. Life Sci, 2014, 101(1-2):56-63.
[17]Sommer TR, Potts WT, Morrissy NM. Recent progress in the use of processed microalgae in aquaculture[J]. Hydrobiologia, 1990, 204/205:435-443.
[18]Carvalho AP, Meireles LA, Malcata FX. Microalgal reactors:a review of enclosed system designs and performances[J]. Biotechnology Progress, 2006, 22(6):1490-1506.
[19]Zhang L, Chen L, Wang J, et al. Attached cultivation for improving the biomass productivity of Spirulina platensis[J]. Bioresource Technology, 2015, 181:136-142.
[20]沈子伟, 陈小江, 郭建林. 螺旋藻在水产养殖中的应用[J]. 饲料博览, 2007, 2(3):43-45.
[21]Wyckmans M, Chepurnov VA, Vanreusel A, et al. Effects of food diversity on diatom selection by harpacticoid copepods[J]. J Exp Mar Biol Ecol, 2007, 345(2):119-128.
[22]黄鸿洲, 康燕玉, 梁君荣, 等. 五种底栖硅藻(鲍鱼饵料)的脂肪酸组成分析[J]. 植物生理学通讯, 2007, 43:349-354.
[23]孙利芹, 任莉红, 王长海. 新月菱形藻的光生物反应器半连续培养[J]. 水产科学, 2009, 28(5):246-250.
[24]Silva Benavides AM, Torzillo G, Kopecky J, et al. Productivity and biochemical composition of Phaeodactylum tricornutum(Bacillariophyceae)cultures grown outdoors in tubular photobioreactors and open ponds[J]. Biomass and Bioenergy, 2013, 54:115-122.
[25]Molina E, Fernandez J, Acien FG, et al. Tubular photobioreactor design for algal cultures[J]. J Biotechnol, 2001, 92:113-131.
[26]Johns G. Microalgal feeds for aquaculture[J]. Applied Phycology, 1994, 6:131-141.
[27]Mitra D, van Leeuwen J, Lamsal B. Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products[J]. Algal Research, 2012, 1(1):40-48.
[28]李金穗, 汪苹, 董黎明. 小球藻高密度培养及油脂提取条件的优化[J]. 微生物学通报, 2012, 39(4):486-494.
[29]Richmond A, Cheng-Wu Z. Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp outdoors[J]. J Biotechnol, 2001, 85(3):259-269.
[30]郑莲, 黄翔鹄, 刘楚吾, 等. 微绿球藻固定化培养及其对对虾养殖水质调控[J]. 海洋科学, 2005, 29(6):4-8.
[31]吴电云, 邹宁, 常林, 等. 球等鞭金藻(Isochrysis galbana Parke)的培养研究进展及应用前景[J]. 科技信息, 2010, 33:28-29.
[32]Ra CH, Kang CH, Kim NK, et al. Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress[J]. Renew Energ, 2015, 80:117-122.
[33]Chaumont D. Biotechnology of algal biomass production:a review of systems for outdoor mass culture[J]. Applied Phycology, 1993, 5:593-604.
[34]Sierra E, Acien FG, Fernandez JM, et al. Characterization of a flat plate photobioreactor for the production of microalgae[J]. Chem Eng J, 2008, 138(1-3):136-147.
[35]孙利芹, 史磊, 王长海. 平板式光生物反应器在饵料微藻培养中的应用[J]. 烟台大学学报, 2007, 20(2):112-115.
[36]Morita M, Watanabe Y, Saiki H. Investigation of photobioreactor design for enhancing the photosynthetic productivity of microal-gae[J]. Biotechnol Bioengineer, 2000, 69(6):693-698.
[37]Liu T, Wang J, Hu Q, et al. Attached cultivation technology of microalgae for efficient biomass feedstock production[J]. Bioresource Technology, 2013, 127:216-222.
[38]Tamburic B, Zemichael FW, Crudge P, et al. Design of a novel flat-plate photobioreactor system for green algal hydrogen production[J]. Int J Hydrogen Energ, 2011, 36:6578-6591.
[39]许波, 王长海. 微藻的平板式光生物反应器高密度培养[J]. 食品与发酵工业, 2002, 29(1):36-40.
[40]Huang J, Li Y, Wan M, et al. Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient[J]. Bioresource Technology, 2014, 159:8-16.
[41]Kim S, Park JE, Cho YB, et al. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions[J]. Bioresource Technology, 2013, 144:8-13.
[42]张帆, 李岿然, 韩笑天, 等. 微藻的异养培养及应用研究[J]. 海洋科学, 2012, 36(1):117-124.
[43]Perez-Garcia O, Escalante FME, de-Bashan LE, et al. Heterotrophic cultures of microalgae:Metabolism and potential products[J]. Water Research, 2011, 45(1):11-36.
[44]李永富, 李祥蕾, 马冬冬. 光照对光生物反应器中微藻高密度光自养培养的影响[J]. 中国生物工程杂志, 2013, 33(2):103-110.
[45]Cheirsilp B, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition:effect of light intensity, glucose concentration and fed-batch cultivation[J]. Bioresource Technology, 2012, 110:510-516.
[46]Wang Y, Rischer H, Eriksen NT, et al. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids[J]. Bioresource Technology, 2013, 144:608-614.
[47]Ethier S, Woisard K, Vaughan D, et al. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid[J]. Bioresource Technology, 2011, 102(1):88-93.
[48]徐志标, 裴鲁青, 骆其君, 等. 绿色巴夫藻的光生物反应器半连续培养研究[J]. 海洋水产研究, 2005, 26(4):64-69.
[49]Han F, Huang J, Li Y, et al. Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2[J]. Bioresource Technology, 2013, 136:418-424.
[50]马志珍, 张继红. 海产饵料微藻超低温保种技术的研究[J]. 中国水产科学, 1997, 4(4):13-17.
[51]Taylor R, Fletcher RL. Cryopreservation of eukaryotic algae-a review of methodologies[J]. J Appl Phycol, 1999, 10:481-501.
[52]胡蓓娟, 王雪青, 吴晶晶, 等. 8种微藻的保存方法研究[J]. 海洋湖沼通报, 2008, 1:58-65.
[53]Roselet F, Maicá P, Martins T, et al. Comparison of open-air and semi-enclosed cultivation system for massive microalgae production in sub-tropical and temperate latitudes[J]. Biomass and Bioenergy, 2013, 59:418-424. |