[1] Schuman MC, Palmeryoung EC, Schmidt A, et al. Ectopic TPS expression enhances sesquiterpene emission in Nicotiana attenuata without altering defense or development of transgenic plants or neighbors[J] . Plant Physiology, 2014, 166(2):779-97. [2] Holopainen, Jarmo K, Gershenzon, et al. Multiple stress factors and the emission of plant VOCs[J] . Trends in Plant Science, 2010, 15(3):176-84. [3] Huelin FE, Murray KE. Alpha-farnesene in the natural coating of apples[J] . Nature, 1966, 210(5042):1260-1261. [4] Yang T, Stoopen G, Yalpani N, et al. Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns[J] . Metabolic Engineering, 2011, 13(4):414-425 [5] K?nnaste A, Vongvanich N, Borg-Karlson AK. Infestation by a Nalepella, species induces emissions of α- and β-farnesenes, (-)-linalool and aromatic compounds in Norway spruce clones of different susceptibility to the large pine weevil[J] . Arthropod-Plant Interactions, 2008, 2(1):31-41. [6] Danner H, Boeckler GA, Irmisch S, et al. Four terpene synthases produce major compounds of the gypsy moth feeding-induced volatile blend of Populus trichocarpa[J] . Phytochemistry, 2011, 72(9):897-908. [7] Sutherland ORW, Hutchins RFN. Attraction of newly hatched codl-ing moth larvae(Laspeyresia pomonella)to synthetic stereo-isom-ers of farnesene[J] . Journal of Insect Physiology, 1973, 19(3):723-727. [8] Lin J, Wang D, Chen X, et al. An(E, E)-α-farnesene synthase gene of soybean has a role in defence against nematodes and is involved in synthesizing insect-induced volatiles[J] . Plant Biotechnology Journal, 2016, 15(1):1-10. [9] Anet EFLJ. Superficial scald, a functional disorder of stored apples. VIII. Volatile products from the autoxidation of alpha-farnesene[J] . Journal of the Science of Food & Agriculture, 1972, 23:605-608. [10] Lerdau MT. A unified mechanism of action for volatile isoprenoids in plant abiotic stress[J] . Nature Chemical Biology, 2009, 5(5):283-291. [11] Baldwin I T. Plant volatiles[J] . Current Biology, 2010, 20(9):R392-7. [12] Loreto F, Pollastri S, Fineschi S, et al. Volatile isoprenoids and their importance for protection against environmental constraints in the Mediterranean area[J] . Environmental & Experimental Botany, 2014, 103(3):99-106. [13] Kempinski C, Jiang Z, Bell S, et al. Metabolic engineering of higher plants and algae for isoprenoid production[M] //Schrader J, Bohlmann J. Biotechnology of Isoprenoids. Springer International Publishing, 2015, 148:161-199. [14] Laule O, Fürholz A, Chang HS, et al. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana[J] . Proceedings of the National Academy of Sciences, 2003, 100(11):6866-6871. [15] Tholl D. Biosynthesis and biological functions of terpenoids in plants[J] . Advances in Biochemical Engineering/biotechnology, 2015, 148:63-106 [16] Rupasinghe HPV, Paliyath G, Murr DP. Biosynthesis of alpha-farnesene and its relation to superficial scald development in ‘Delicious’ apples[J] . American Society for Horticultural Science, 1998, 11(3):245-248. [17] 李萌, 张元湖, 隋娜, 等. 苹果中α-法尼烯的代谢途径及其分子调控[J] . 植物生理学报, 2005, 41(1):99-104. [18] Green S, Friel EN, Matich A, et al. Unusual features of a recombinant apple alpha-farnesene synthase[J] . Phytochemistry, 2007, 68(2):176-188. [19] Pazouki L, ülo Niinemets. Multi-Substrate terpene synthases:their occurrence and physiological significance[J] . Frontiers in Plant Science, 2016, 7(111):1-16 [20] Pechous SW, Whitaker BD. Cloning and functional expression of an(E, E)-α-farnesene synthase cDNA from peel tissue of apple fruit[J] . Planta, 2004, 219(1):84-94. [21] 李萌, 隋娜, 张元湖, 等. 苹果AFS基因的克隆与原核表达[J] . 园艺学报, 2006, 33(1):122-124. [22] 苑克俊, 刘庆忠, 李勃, 等. 苹果α-法尼烯合酶基因组结构和序列的多态性分析[J] . 园艺学报, 2007, 34(4):1003-1006. [23] Beuning L, Green S, Yauk YK. The genomic sequence of AFS-1 - an alpha-farnesene synthase from the apple cultivar ‘Royal Gala’. [J] . Frontiers of Agriculture in China, 2010, 4(1):74-78. [24] Green S, Squire CJ, Nieuwenhuizen NJ, et al. Defining the potassium binding region in an apple terpene synthase[J] . Journal of Biological Chemistry, 2009, 284(284):8661-8669. [25] Green S, Baker EN. A non-synonymous nucleotide substitution can account for one evolutionary route to sesquiterpene synthase activity in the TPS-b subgroup[J] . Febs Letters, 2011, 585(12):1841-1846 [26] Sen TZ, Jernigan RL, Garnier J, et al. GOR V server for protein secondary structure prediction[J] . Bioinformatics, 2005, 21(11):2787-8. [27] Dudareva N, Martin D, Kish CM, et al. (E)-β-Ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon:function and expression of three terpene synthase genes of a new terpene synthase subfamily[J] . Plant Cell, 2003, 15(5):1227-1241. [28] Huang M, Abel C, Sohrabi R, et al. Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03[J] . Plant Physiology, 2010, 153(3):1293-1310. [29] Martin DM, Aubourg S, Schouwey MB, et al. Functional annotation, genome organization and phylogeny of the grapevine(Vitis vinifera)terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays[J] . BMC Plant Biology, 2010, 10(1):226-248 [30] Mercke P, Kappers IF, Verstappen FW, et al. Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. [J] . Plant Physiology, 2004, 135(4):2012-2024. [31] Phillips MA, Wildung MR, Williams DC, et al. cDNA isolation, functional expression, and characterization of(+)-alpha-pinene synthase and(-)-alpha-pinene synthase from loblolly pine(Pinus taeda):stereocontrol in pinene biosynthesis[J] . Archives of Biochemistry & Biophysics, 2003, 411(2):267-276. [32] 邓帅, 成妮妮, 丁瑞瑞, 等. 苹果和梨AFS基因启动子的克隆、序列比对及功能分析[J] . 园艺学报, 2015, 42(12):2353-2361. [33] Wang L, Allmann S, Wu J, et al. Comparisons of LIPOXYGENA-SE3- and JASMONATE-RESISTANT4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata. [J] . Plant Physiology, 2008, 146(3):904-915. [34] Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J] . Annual Review of Plant Biology, 2013, 64(1):665-700. [35] Tholl D, Lee S. Terpene Specialized Metabolism in Arabidopsis thaliana[J] . Arabidopsis Book, 2011, 9:e0143. |