[1]Farmer EE, Weber H, Vollenweider S. Fatty acid signaling in Arabidopsis[J]. Planta, 1998, 206:167-174. [2]Weber H. Fatty acid-derived signals in plants[J]. Trend Plant Sci, 2002, 7(5):217-224. [3]Shi YL, An LZ, Li XR, et al. The octadecanoid signaling pathway participates in the chilling-induced transcription of ω-3 fatty acid desaturases in Arabidopsis[J]. Plant Physiol Bioch, 2011, 49:208-215. [4]Seo JH, Lee SM, Lee JW, et al. Adding value to plant oil and fatty acids:Biological transformation of fatty acids into ω-hydroxycarboxylic, α, ω-dicarboxylic, and ω-aminocarboxylic acids[J]. J Biotechnol, 2016, 216:158-166. [5]Chu H, Tso TC. Fatty acid in tobacco I. Green tobacco plants[J]. Plant Physiol, 1968, 43:428-433. [6]Dunkle MN, Yoshimura Y, Kindt R, et al. Lipidomics of tobacco leaf and cigarette smoke[J]. J Chromatog A, 2016, 1439:54-64. [7]Murakami Y, Tsuyama M, et al. Trienoic fatty acids and plant tolerance of high temperature[J]. Science, 2000, 287:476-479. [8]Hino T, Tanaka T, Okuma E, et al. Analysis of fatty acids and sterols of plasma membrane and tonoplast isolated from salt-stress adaptation of tobacco cultured cells in suspension[J]. Journal Mol Struct, 2009, 919(1):189-195. [9]Tang G Y, Wei L Q, Liu Z J, et al. Ectopic expression of peanut acyl carrier protein in tobacco alters fatty acid composition in the leaf and resistance to cold stress[J]. Biol Plantarum, 2012, 3:493-501. [10]Giannelos PN, Zannikos F, Stournas S, et al. Tobacco seed oil as an alternative diesel fuel:physical and chemical properties[J]. Ind Crop Prod, 2002, 16:1-9. [11]Azam M, Habib U, Hamid M. Fatty acid composition of tobacco seed oil and synthesis of alkyd resin[J]. Chin J Chem, 2007, 25:705-708. [12]柴家荣. 不同烟草类型种子萌发期脂肪酶及脂类物质动态研究[J]. 种子, 2010, 29(8):31-33. [13]Koiwai A, Matsuzaki T, Suzuki F, et al. Changes in total and polar lipids and their fatty acid composition in tobacco leaves during growth and senescence[J]. Plant Cell Physiol, 1981, 22(6):1059-1065. [14]宫长荣, 汪耀富, 赵铭钦, 等. 不同成熟度和烘烤处理对烟叶C12~C60脂肪酸含量的影响[J]. 河南农业大学学报, 1996, 30(1):37-40. [15]黎娟, 等. 烤烟成熟进程中主要化学成分的变化[J]. 湖南农业大学学报:自然科学版, 2006, 32(3):241-244. [16]刘百战, 徐亮, 詹建波, 等. 云南烤烟中非挥发性有机酸及某些高级脂肪酸的分析[J]. 中国烟草科学, 1999, (2):28-31. [17]景延秋, 张欣华, 刘剑君, 等. 烤烟不同叶位叶片有机酸含量的差异分析[J]. 华北农学报, 2011, 26(4):111-114. [18]黄勇, 周冀衡, 刘建利, 等. 不同部位烟叶海绵与栅栏细胞中主要化学成分研究[J]. 中国农业科学, 2007, 40(10):2289-2295. [19]卢秀萍, 许仪, 许自成, 等. 不同烤烟基因型非挥发性有机酸和高级脂肪酸含量的变异分析[J]. 中国烟草学报, 2007, 13(3):47-51. [20]王树会, 等. 不同烤烟品种及海拔对烟叶有机酸的影响[J]. 西南农业大学学报:自然科学版, 2006, 28(1):127-130. [21]朱楠, 廖菊够, 索文龙, 等. 4种烟草雌蕊中酚类、氨基酸和脂肪酸成分检测分析[J]. 生物学杂志, 2015(4):25-29. [22]彭艳, 周冀衡, 张建平, 等. 不同品种烤烟有机酸组成含量分析[J]. 云南农业大学学报, 2011, 26(5):652-655. [23]李鹏飞, 李大肥, 兰富和, 等. 不同新品种烤烟非挥发性有机酸含量的差异[J]. 云南农业大学学报, 2015(1):154-158. [24]叶协锋, 刘挺, 杨红柯, 等. 烤烟有机酸含量与土壤理化性状关系分析[J]. 土壤通报, 2010, 41(4):931-937. [25]尹光庭, 周冀衡, 匡勇, 等. 不同土壤类型烤烟非发挥性有机酸含量的差异[J]. 湖南农业科学, 2011, 1:62-65. [26]李强, 周冀衡, 杨荣生, 等. 土壤及气候对烤烟非挥发性有机酸含量影响的效应分析[J]. 江西农业大学学报, 2011, 33(6):1043-1049. [27]沈晗, 周冀衡, 赵百东, 等. 腾冲火山灰土壤区域烟叶化学成分特征[J]. 中国烟草科学, 2014, 35(4):70-74. [28]陈颐, 杨红武, 杨虹琦, 等. 不同光温培养烟苗对浓香型初烤烟叶香气物质的影响[J]. 中国农学通报, 2014, 30(13):201-206. [29]Yun F, Liu GS, Shi HZ, et al. Interactive effects of light intensity and nitrogen supply on the neutral volatile aroma components and organic acids of flue-cured tobacco[J]. J Food Agric Environ, 2013, 11(1):1187-1194. [30]云菲, 刘国顺, 宋晶. 不同光照强度下氮素对烤烟质体色素降解产物及品质的影响[J]. 中国烟草学报, 2014(5):51-58. [31]孟霖, 梁盟, 王程栋, 等. 烟草叶片对不同光质短期应答的代谢轮廓[J]. 应用生态学报, 2015, 26(12):3773-3780. [32]左敏, 周冀衡, 何伟, 等. 增强UV-B辐射对烤烟香气前体物质含量的影响[J]. 云南农业大学学报, 2011(6):795-799. [33]Gawer M, Sansonetti A, Mazliak P. Lipid composition of tobacco cells cultivated at various temperatures[J]. Phytochemistry, 1983, 22(4):855-859. [34]Popov VN, Antipina OV, Pchelkin VPP, et al. Changes in the content and composition of lipid fatty acids in tobacco leaves and roots at low-temperature hardening[J]. Russ J Plant Physiol, 2012, 59(2):177-182. [35]周越, 周冀衡, 范幸龙, 等. 夜间温度升高对云南高海拔烟叶理化性状及主要致香前体物的影响[J]. 云南农业大学学报, 2016, 31(1):115-121. [36]杨虹琦, 周冀衡, 杨述元, 等. 不同纬度烟区烤烟叶中主要非挥发性有机酸的研究[J]. 湖南农业大学学报:自然科学版, 2005, 31(3):281-284. [37]简永兴, 董道竹, 刘建峰, 等. 湘西北海拔高度对烤烟多元酸及高级脂肪酸含量的影响[J]. 湖南师范大学:自然科学学报, 2007, 30(1):72-75. [38]韩锦峰, 史宏志, 王彦亭, 等. 不同氮量和氮源的烟叶高级脂肪酸含量及其与香吃味的关系[J]. 作物学报, 1998, 24(1):125-128. [39] 李银科, 王正银, 杨光宇, 等. 不同施氮水平对红花大金元烟叶香味物质和感官评吸质量的影响[J]. 植物营养与肥料学报, 2017, 23(2):539-547. [40]刘国顺, 叶协锋, 王彦亭, 等. 不同钾肥施用量对烟叶香气成分含量的影响[J]. 中国烟草科学, 2004, 4:1-4. [41]叶协锋, 朱海滨, 凌爱芬, 等. 不同钾肥对烤烟叶片钾和中性香气成分及非挥发性有机酸含量的影响研究[J]. 土壤通报, 2008, 39(2):338-343. [42]武雪萍, 朱凯, 刘国顺, 等. 有机无机肥配施对烟叶化学成分和品质的影响[J]. 中国土壤与肥料, 2005, 1:10-13. [43]顾明华, 周晓, 韦建玉, 等. 有机无机肥配施对烤烟脂类代谢的影响研究[J]. 生态环境学报 2009, 18(2):674-678 [44]徐发华, 朱凯, 荆永锋. 不同时期施用苹果酸对烟叶中非挥发性有机酸的影响[J]. 西南农业学报, 2008, 21(1):66-70. [45]宫长荣, 李艳梅, 李常军. 烘烤过程中烟叶脂氧合酶活性与膜脂过氧化的关系[J]. 中国烟草学报, 2000, 6(1):39-41. [46]管维, 杨虹琦, 尹光庭, 等. 不同品种烤烟烘烤前后非挥发性有机酸含量的研究[J]. 作物研究, 2012, 26(2):148-152. [47]周晓, 王维刚, 孟冬玲. 我国烤烟主产区不同种类烤烟有机酸含量分析[J]. 广东农业科学, 2012, 2:26-27. [48]Weete JD. Total fatty acids of habituated and teratoma tissue of cultures of tobacco[J]. Lipids, 1971, 6(9):684-685. [49]Hamada T, Nishiuchi T, Kodama H, et al. Cloning of a wounding-inducible gene encoding a plastid ω-3 fatty acid desaturase from tobacco[J]. Plant Cell Physiol, 1996, 37(5):606-611. [50]Shintani DK, Ohlrogge JB. Feedback inhibition of fatty acid synthesis in tobacco suspension cells[J]. Plant J, 1995, 7(4):577-587. [51]Sumayo M S, Kwon DK, Ghim SY. Linoleic acid-induced expression of defense genes and enzymes in tobacco[J]. J. Plant Physiol, 2014, 171:1757-1762. [52]Hamberg M, Sanz A, Rodriguez M J. Activation of the fatty Acid α-dioxygenase pathway during bacterial infection of tobacco leaves[J]. J Biol Chem, 2003, 278(51):51796-51805. [53]Shorrish BS, Dixon RA, Ohlrogge JB. Molecular cloning, characterization, and elicitation of acetyl-CoA carboxylase form alfalfa[J]. Proc Natl Acad Sci USA, 1994, 91:4323-4327. [54]卢善发, 植物脂肪酸的生物合成与基因工程[J]. 植物学通报, 2000, 17(6):481-491. [55]Zakim D, Herman R H. Regulation of fatty acid synthesis[J]. Annu Rev Plant Biol, 1997, 48(48):109-136. [56]Rawsthorne S. Carbon flux and fatty acid synthesis in plants[J]. Prog Lipid Res, 2002, 41:182-196. [57]Madoka Y, Tomizawa KI, Mizoi J, et al. Chloroplast transformation with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco[J]. Plant Cell Physiol, 2002, 43(12):1518-1525 [58]Yang TQ, Xu RH, et al. β-ketoacyl-acyl carrier protein synthase I(KASI)plays crucial role in the plant growth and fatty acids synthesis in tobacco[J]. Int J Mol Sci, 2016, 17:1287-1303. [59]Rangasamy D, Ratledge C. Genetic enhancement of fatty acid synthesis by targeting rat liver ATP:Citrate Lyase into plastid of tobacco[J]. Plant Physiol, 2000, 122:1231-1238. [60]Marchis FD, et al. Overexpression of the olive acyl carrier protein gene(OeACP1)produces alterations in fatty acid composition of tobacco leaves[J]. Transgenic Res, 2016, 25:45-61. [61]Tang GY, Wei LQ, Liu ZJ, et al. Ectopic expression of peanut acyl carrier protein in tobacco alters fatty acid composition in the leaf and resistance to cold stress[J]. Biol Plantarum, 2012, 56(3):493-501. [62]赵彦朋, 刘峰, 李艳军, 等. 同步抑制FAD2与FatB基因提高烟草种子油酸组分含量的研究[J]. 西北植物学报, 2015, 35(2):0245-0251. [63]Yang MF, Zheng G, et al. FAD2-silencing has pleiotropic effect on polar lipids of leaves and varied effect in different organs of transgenic tobacco[J]. Plant Sci, 2006, 170:170-177. [64]Zhang LL, Lu HS, et al. Lipid desaturation in prokaryotic pathway abates the high-oleic phenotype of FAD2-silenced tobacco at lower temperature[J]. J Plant Biochem Biot, 2016, 25(4):375-381. [65]Hamada T, Kodama H, Nishimura M, et al. Modification of fatty acid composition by over -and antisense-expression of microtonal ω-3 fatty acid desaturase gene in transgenic tobacco[J]. Transgenic Res, 1996, 5:115-121. [66]Zhang M, Brag R, Yin M G, et al. Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants[J]. Plant J, 2005, 44:361-371. [67]Kodama H, Hamada T, et al. Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-3 fatty acid desaturase in transgenic tobacco[J]. Plant Physiol, 1994, 105:601-605. [68]Komada H, Goriguchi G, Nishuchi T, et al. Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco leaves[J]. Plant Physiol, 1995, 107:1177-1185. [69]Hamada T, Iba K, Shimada T. Reduction of trienoic fatty acid content by expression of a double-stranded RNA of a plastid ω-3 fatty acid desaturase gene in transgenic tobacco[J]. Biotechnol Lett, 2006, 28:779-785. [70]Khodakovsjaya M, McAvoy R, Peters J, et al. Enhanced cold tolerance in transgenic tobacco expressing a chloroplast omega-3 fatty acid desaturase gene under the control of a cold inducible promoter[J]. Planta, 2006, 223(5):1090-1100. [71]Cahoon EB, Shanklin J, Ohlrogge JB. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco[J]. Pro Natl Acad Sci USA, 1992, 89:11184-11188. [72]Sayanova O, Smith M, Lapinskas P, et al. Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of Δ6-desaturated fatty acids in transgenic tobacco[J]. Pro Natl Acad Sci USA, 1997, 94:4211-4216. [73]Sayanova O, Davies GM, Smith MA, et al. Accumulation of D6-unsaturated fatty acids in transgenic tobacco plants expressing a D6-desaturase from Borago officinalis[J]. J Exp Bot, 1999, 50(340):1647-1652. [74]Orlova IV, Serebriskaya TS, Popov V. Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants[J]. Plant Cell Physiol, 2003, 44(4):447-450. [75]Craig W, Lenzi P, Scotti N. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance[J]. Transgenic Res, 2008, 17:769-782. [76]Sakamoto A, Sulpice R, Hou CX, et al. Genetic modification of the fatty acid unsaturation of phosphatidylglycerol in chloroplasts alters the sensitivity of tobacco plants to cold stress[J]. Plant Cell Environ, 2003, 27:99-105. [77]李明春, 刘莉, 胡国武. 深黄被包霉Δ9-脂肪酸脱氢酶基因在转基因烟草中的表达[J]. 生物工程学报, 2003, 19(2):178-184. [78]李明春, 刘莉, 胡国武. 转基因烟草表达高山被包霉Δ6-脂肪酸脱氢酶基因的研究[J]. 作物学报, 2004, 30(6):618-621. [79]高昌勇, 毛雪, 尚宏芹, 等. 超表达 MucACP-Δ9脱氢酶对烟草叶片组织油脂合成的影响[J]. 植物生理学报, 2016, 52(9):1333-1340. [80]薛金爱, 毛雪, 吴永美, 等. 酿酒酵母脂酰-CoAΔ9 脱氢酶亚细胞定位表达及其对烟草脂肪酸合成的影响[J]. 生物工程学报, 2013, 29(5):630-645. [81]Nookaraju A, Pendey SK, Fujino T, et al. Enhanced accumulation of fatty acids and triacyglycerols in transgenic tobacco stems for enhanced bioenergy production[J]. Plant Cell Reports, 2014, 33:1041-1052. [82]孙黎, 寇尚龙, 欧阳超, 等. 油葵含油量相关基因在烟草中的表达[J]. 西北植物学报, 2011, 31(5):0861-0867. [83]Zhang FY, Yang MF, Xu YN. Silencing of DGTA1 in tobacco causes a reduction in seed oil content[J]. Plant Sci, 2005, 169:689-694. [84]Li ZG, Zeng HZ, Ao P X, et al. Lipid response to short-term chilling shock and long-term chill hardening in Jatropha curcas L. seedlings[J]. Acta Physiol Plant, 2014, 36:2803-2814. |