[1] Qu LJ, Zhu YX.Transcription factor families in Arabidopsis:major progress and outstanding issues for future research[J]. Current Opinion Plant Biology, 2006, 9(5):544-549. [2] Wang H, Wang H, Shao H, et al.Recent advances in utilizing transc-ription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Frontiers in Plant Science, 2016, 7(248):1-13. [3] Eulgem T, Rushton PJ, Robatzek S, et al.The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5):199-206. [4] Rushton PJ, Somssich IE, Ringler P, et al.WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5):247-258. [5] Pandey SP, Somssich IE.The role of WRKY transcription factors in plant immunity[J]. Plant physiology, 2009, 150(4):1648-1655. [6] Chen L, Song Y, Li S, et al.The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta, 2012, 1819(2):120-128. [7] Tao Z, Liu H, Qiu D, et al.A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions[J]. Plant Physiology, 2009, 151(2):936-948. [8] Zheng Z, Qamar SA, Chen Z, et al.Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens[J]. The Plant Journal, 2006, 48(4):592-605. [9] Mao G, Meng X, Liu Y, et al.Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis[J]. The Plant Cell, 2011, 23(4):1639-1653. [10] Jiang Y, Deyholos MK.Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses[J]. Plant Molecular Biology, 2009, 69(1/2):91-105. [11] Li S, Fu Q, Chen L, et al.Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance[J]. Planta, 2011, 233(6):1237-1252. [12] Miao Y, Smykowski A, Zentgraf U.A novel upstream regulator of WRKY53 transcription during leaf senescence in Arabidopsis thaliana[J]. Plant Biology(Stuttg), 2008, 10(1):110-120. [13] Grunewald W, Smet ID, Daniel R, et al.Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis[J]. Proceedings of the National Academy Sciences of the USA, 2011, 109(1):1554-1559. [14] Johnson CS, Kolevski B, Smyth DR.TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor[J]. The Plant Cell, 2002, 14(6):1359-1375. [15] Chang IF, Curran A, Woolsey R, et al.Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana[J]. Proteomics, 2009, 9(11):2967-2985. [16] Lai Z, Li Y, Wang F, et al.Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense[J]. The Plant Cell, 2011, 23(10):3824-3841. [17] Besseau S, Li J, Palva ET.WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2012, 63(7):2667-2679. [18] Yang G, Zhang W, Liu Z, et al.Both JrWRKY2 and JrWRKY7 of Juglans regia mediate responses to abiotic stresses and abscisic acid through formation of homodimers and interaction[J]. Plant Biology(Stuttg), 2017, 19(2):268-278. [19] Niu F, Wang C, Yan J, et al.Functional characterization of NAC55 transcription factor from oilseed rape(Brassica napus L. )as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death[J]. Plant Molecular Biology, 2016, 92(1/2):89-104. [20] Waadt R, Kudla J.In planta visualization of protein interactions using bimolecular fluorescence complementation(BiFC)[J]. Nature Protocols, 2008, 3(4):588. [21] Bakshi M, Oelmuller R.WRKY transcription factors:Jack of many trades in plants[J]. Plant Signaling and Behavior, 2014, 9(2):e27700. [22] Chen YF, Li LQ, Xu Q, et al.The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis[J]. The Plant Cell, 2009, 21(11):3554-3566. [23] Castrillo G, Sanchez-bermejo E, Lorenzo L, et al. WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis[J]. The Plant Cell, 2013, 25(8):2944-2957. [24] Su T, Xu Q, Zhang FC, et al.WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis[J]. Plant Physiology, 2015, 167(4):1579-1591. [25] Wang H, Xu Q, Kong YH, et al.Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation[J]. Plant Physiology, 2014, 164(4):2020-2029. [26] Wu WS, Lai FJ.Functional redundancy of transcription factors explains why most binding targets of a transcription factor are not affected when the transcription factor is knocked out[J]. BMC Systems Biology, 2015, 9(S6):1-9. [27] Kagale S, Links MG, Rozwadowski K.Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis[J]. Plant Physiology, 2010, 152(3):1134. [28] Li G, Meng X, Wang R, et al.Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis[J]. PLoS Genetic, 2012, 8(6):e1002767. [29] Zhang J, Liu B, Li M, et al.The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis[J]. The Plant Cell, 2015, 27(3):787-805. [30] Rybel B, Moller B, Yoshida S, et al.A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis[J]. Developmental Cell, 2013, 24(4):426-437. |