生物技术通报 ›› 2018, Vol. 34 ›› Issue (1): 15-25.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0996
陈倩1,2, 谢旗1,2
收稿日期:
2017-11-21
出版日期:
2018-01-26
发布日期:
2018-01-22
作者简介:
陈倩,女,博士,研究方向:内质网相关的蛋白质降解与非生物胁迫;E-mail:qianchen@genetics.ac.cn
基金资助:
CHEN Qian1,2, XIE Qi1,2
Received:
2017-11-21
Published:
2018-01-26
Online:
2018-01-22
摘要: 内质网是膜蛋白和分泌蛋白合成新肽链以及新肽链初步折叠修饰的重要场所,只有经过二硫键形成、羟基化以及糖基化等修饰的肽链正确折叠后才能达到其正确蛋白质构象,或进入高尔基体进行进一步的修饰和折叠。然而,折叠和修饰的过程是复杂且易错的,如果生命体遭受某些内源或外源的压力,出错概率会成倍增加。错误折叠的蛋白质由内质网中的质量检测系统识别并滞留在内质网内,一旦错误蛋白积累量超过内质网的承受能力,就会引起细胞一系列的响应以实现新的内质网稳态,这个过程称为内质网应激反应,也称内质网胁迫应答。重新实现内质网稳态的方法主要有非折叠蛋白反应、内质网相关的蛋白质降解过程、自噬过程以及细胞凋亡。这些过程在酵母和动物领域的研究已经非常系统,主要总结了这些过程在高等生物中的保守作用机制以及在植物领域的研究进展,希望能够为致力于植物生长发育或胁迫响应过程的研究人员提供参考。
陈倩, 谢旗. 内质网胁迫在植物中的研究进展[J]. 生物技术通报, 2018, 34(1): 15-25.
CHEN Qian, XIE Qi. The Research Progress of the Endoplasmic Reticulum(ER)Stress Response in Plant[J]. Biotechnology Bulletin, 2018, 34(1): 15-25.
[1] Castellani F, van Rossum B, Diehl A, et al. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy[J]. Nature, 2002, 420(6911):98-102. [2] Schroder M, Kaufman RJ. ER stress and the unfolded protein response[J]. Mutat Res, 2005, 569(1-2):29-63. [3] Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum[J]. Nat Rev Mol Cell Biol, 2003, 4(3):181-191. [4] Hurtley SM, Helenius A. Protein oligomerization in the endoplasmic reticulum[J]. Annu Rev Cell Biol, 1989, 5:277-307. [5] Liu JX, Srivastava R, Che P, et al. Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling[J]. Plant J, 2007, 51(5):897-909. [6] Thomashow MF. PLANT COLD ACCLIMATION:freezing tolerance genes and regulatory mechanisms[J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50:571-599. [7] Deng Y, Humbert S, Liu JX, et al. Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108(17):7247-7252. [8] Doblas VG, Amorim-Silva V, Pose D, et al. The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in Arabidopsis[J]. Plant Cell, 2013, 25(2):728-743. [9] 杨正婷, 刘建祥. 植物内质网胁迫应答研究进展[J]. 生物技术通报, 2016, 32(10):84-96. [10] Kanehara KS, Kawaguchi and Ng DT. The EDEM and Yos9p families of lectin-like ERAD factors[J]. Semin Cell Dev Biol, 2007, 18(6):743-750. [11] Clerc S, Hirsch C, Oggier DM, et al. Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum[J]. J Cell Biol, 2009, 184(1):159-172. [12] Hammond C, Braakman I, Helenius A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control[J]. Proc Natl Acad Sci USA, 1994, 91(3):913-917. [13] Parodi AJ. Protein glucosylation and its role in protein folding[J]. Annu Rev Biochem, 2000, 69:69-93. [14] Jakob CA, Burda P, Roth J, et al. Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure[J]. J Cell Biol, 1998, 142(5):1223-1233. [15] Oda Y, Hosokawa N, Wada I, et al. EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin[J]. Science, 2003, 299(5611):1394-1397. [16] Vu KV, Nguyen NT, Jeong CY, et al. Systematic deletion of the ER lectin chaperone genes reveals their roles in vegetative growth and male gametophyte development in Arabidopsis[J]. Plant J, 2017, 89(5):972-983. [17] Noguchi T, Fujioka S, Choe S, et al. Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids[J]. Plant Physiol, 1999, 121(3):743-752. [18] Jin H, Hong Z, Su W, et al. A plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the endoplasmic reticulum[J]. Proc Natl Acad Sci USA, 2009, 106(32):13612-13617. [19] Blanco-Herrera F, Moreno AA, Tapia R, et al. The UDP-glucose:glycoprotein glucosyltransferase(UGGT), a key enzyme in ER quality control, plays a significant role in plant growth as well as biotic and abiotic stress in Arabidopsis thaliana[J]. BMC Plant Biol, 2015, 15:127. [20] Liebminger E, Huttner S, Vavra U, et al. Class I alpha-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana[J]. Plant Cell, 2009, 21(12):3850-3867. [21] Huttner S, Veit C, Vavra U, et al. Arabidopsis class I alpha-manno-sidases MNS4 and MNS5 are involved in endoplasmic reticulum-associated degradation of misfolded glycoproteins[J]. Plant Cell, 2014, 26(4):1712-1728. [22] Gething MJ. Role and regulation of the ER chaperone BiP[J]. Semin Cell Dev Biol, 1999, 10(5):465-472. [23] Howell SH. Endoplasmic reticulum stress responses in plants[J]. Annu Rev Plant Biol, 2013, 64:477-499. [24] Chakrabarti A, Chen AW, Varner JD. A review of the mammalian unfolded protein response[J]. Biotechnol Bioeng, 2011, 108(12):2777-2793. [25] Sun SY, Shi GJ, Sha HB, et al. IRE1 alpha is an endogenous substrate of endoplasmic-reticulum-associated degradation[J]. Nature Cell Biology, 2015, 17(12):1546-1555. [26] Chen X, Shen J, Prywes R. The luminal domain of ATF6 senses endoplasmic reticulum(ER)stress and causes translocation of ATF6 from the ER to the Golgi[J]. J Biol Chem, 2002, 277(15):13045-13052. [27] Kebache S, Cardin E, Nguyen DT, et al. Nck-1 antagonizes the endoplasmic reticulum stress-induced inhibition of translation[J]. J Biol Chem, 2004, 279(10):9662-9671. [28] Nagashima Y, Mishiba K, Suzuki E, et al. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor[J]. Sci Rep, 2011, 1:29. [29] Harding HP, Calfon M, Urano F, et al. Transcriptional and translational control in the Mammalian unfolded protein response[J]. Annu Rev Cell Dev Biol, 2002, 18:575-599. [30] Kaufman RJ, Scheuner D, Schroder M, et al. The unfolded protein response in nutrient sensing and differentiation[J]. Nat Rev Mol Cell Biol, 2002, 3(6):411-421. [31] Kimata Y, Kimata YI, Shimizu Y, et al. Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins[J]. Mol Biol Cell, 2003, 14(6):2559-2569. [32] Srivastava R, Chen YN, Deng Y, et al. Elements proximal to and within the transmembrane domain mediate the organelle-to-organelle movement of bZIP28 under ER stress conditions[J]. Plant Journal, 2012, 70(6):1033-1042. [33] Sun L, Lu SJ, Zhang SS, et al. The Lumen-facing domain is important for the biological function and organelle-to-organelle movement of bZIP28 during ER stress in Arabidopsis[J]. Mol Plant, 2013, 6(5):1605-1615. [34] Liu JX, Srivastava R. Che P, et al. An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28[J]. Plant Cell, 2007, 19(12):4111-4119. [35] Che P, Bussell JD, Zhou W, et al. Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis[J]. Sci Signal, 2010, 3(141):ra69. [36] Liu JX, Howell SH. Managing the protein folding demands in the endoplasmic reticulum of plants[J]. New Phytol, 2016, 211(2):418-428. [37] Gao H, Brandizzi F, Benning C, et al. A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2008, 105(42):16398-16403. [38] Liu JX, Howell SH. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants[J]. Plant Cell, 2010, 22(9):2930-2942. [39] Zhang SS, Yang H, Ding L, et al. Tissue-specific transcriptomics reveals an important role of the unfolded protein response in maintaining fertility upon heat stress in Arabidopsis[J]. Plant Cell, 2017, 29:1007-1023. [40] Yang ZT, Wang MJ, Sun L, et al. The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants[J]. PLoS Genet, 2014, 10(3):e1004243. [41] Yang ZT, Lu SJ, Wang MJ, et al. A plasma membrane-tethered transcription factor, NAC062/ANAC062/NTL6, mediates the unfolded protein response in Arabidopsis[J]. Plant J, 2014, 79(6):1033-1043. [42] Seo PJ, Kim MJ, Park JY, et al. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis[J]. Plant J, 2010, 61(4):661-671. [43] McCracken AA, Brodsky JL. Assembly of ER-associated protein degradation in vitro:dependence on cytosol, calnexin, and ATP[J]. J Cell Biol, 1996, 132(3):291-298. [44] Buchberger A. ERQC Autophagy:yet another way to die[J]. Mol Cell, 2014, 54(1):3-4. [45] Houck SA, Ren HY, Madden VJ, et al. Quality control autophagy degrades soluble erad-resistant conformers of the misfolded membrane protein GnRHR[J]. Mol Cell, 2014, 54(1):166-179. [46] Vembar SS, Brodsky JL. One step at a time:endoplasmic reticulum-associated degradation[J]. Nat Rev Mol Cell Biol, 2008, 9(12):944-957. [47] Imai Y. Parkin suppresses unfolded protein stress-induced cell death through Its E3 Ubiquitin-protein ligase activity[J]. Journal of Biological Chemistry, 2000, 275(46):35661-35664. [48] Liu LJ, Cui F, Li QL, et al. The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance[J]. Cell Res, 2011, 21(6):957-969. [49] Koenig PA, Nicholls PK, Schmidt FI, et al. The E2 ubiquitin-conjugating enzyme UBE2J1 is required for spermiogenesis in mice[J]. Journal of Biological Chemistry, 2014, 289(50):34490-34502. [50] Sun S, Shi G, Han X, et al. Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival[J]. Proc Natl Acad Sci USA, 2014, 111(5):E582-591. [51] Wang YY, Wang WH, Cai JH, et al. Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening[J]. Genome Biology, 2014, 15(12). [52] Ushioda R, Hoseki J, Nagata K. Glycosylation-independent ERAD pathway serves as a backup system under ER stress[J]. Mol Biol Cell, 2013, 24(20):3155-3163. [53] Fu XL, Gao DS. Endoplasmic reticulum proteins quality control and the unfolded protein response:the regulative mechanism of organisms against stress injuries[J]. Biofactors, 2014, 40(6):569-585. [54] Su W, Liu Y, Xia Y, et al. The Arabidopsis homolog of the mammalian OS-9 protein plays a key role in the endoplasmic reticulum-associated degradation of misfolded receptor-like kinases[J]. Mol Plant, 2012, 5(4):929-940. [55] Huttner S, Veit C, Schoberer J, et al. Unraveling the function of Arabidopsis thaliana OS9 in the endoplasmic reticulum-associated degradation of glycoproteins[J]. Plant Mol Biol, 2012, 79(1-2):21-33. [56] Wiertz EJ, Tortorella D, Bogyo M, et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction[J]. Nature, 1996, 384(6608):432-438. [57] Pilon M, Schekman R, Romisch K. Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation[J]. EMBO J, 1997, 16(15):4540-4548. [58] Knop M, Finger A, Braun T, et al. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast[J]. EMBO J, 1996, 15(4):753-763. [59] Carvalho P, Stanley AM, Rapoport TA. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p[J]. Cell, 2010, 143(4):579-591. [60] Schoebel S, Mi W, Stein A, et al. Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3[J]. Nature, 2017, 548(7667):352-355. [61] Chen Q, Zhong YW, Wu YR, et al. HRD1-mediated ERAD tuning of ER-bound E2 is conserved between plants and mammals[J]. Nat Plants, 2016, 2:16094. [62] Li QL, Wei H, Liu LJ, et al. Unfolded protein response activation compensates endoplasmic reticulum-associated degradation deficiency in Arabidopsis[J]. J Integr Plant Biol, 2017, 59(7):506-521. [63] Zhao H, Zhang H, Cui P, et al. The Putative E3 ubiquitin ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in Arabidopsis[J]. Plant Physiol, 2014, 165(3):1255-1268. [64] Li LM, Lu SY, Li RJ, The Arabidopsis endoplasmic reticulum associated degradation pathways are involved in the regulation of heat stress response[J]. Biochem Biophys Res Commun, 2017, 487(2):362-367. [65] Merulla J, Fasana E, Solda T, et al. Specificity and regulation of the endoplasmic reticulum-associated degradation machinery[J]. Traffic, 2013, 14(7):767-777. [66] Chen Q, Liu RJ. Wang Q, et al. ERAD Tuning of the HRD1 complex component AtOS9 is modulated by an ER-Bound E2, UBC32[J]. Mol Plant, 2017, 10(6):891-894. [67] Perlmutter DH. Alpha-1-antitrypsin deficiency:importance of proteasomal and autophagic degradative pathways in disposal of liver disease-associated protein aggregates[J]. Annu Rev Med, 2011, 62:333-345. [68] Feng L, et al. Ubiquitin ligase SYVN1/HRD1 facilitates degradation of the SERPINA1 Z variant/alpha-1-antitrypsin Z variant via SQSTM1/p62-dependent selective autophagy[J]. Autophagy, 2017, 13(4):686-702. [69] Yang X, Srivastava R, Howell SH, et al. Activation of autophagy by unfolded proteins during endoplasmic reticulum stress[J]. Plant J, 2016, 85(1):83-95. [70] Liu Y, Burgos JS, Deng Y, et al. Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis[J]. Plant Cell, 2012, 24(11):4635-4651. [71] Gallois P, Makishima T, Hecht V, et al. An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant[J]. Plant J, 1997, 11(6):1325-1331. [72] Danon A, Rotari VI, Gordon A, et al. Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and defender against apoptotic death[J]. J Biol Chem, 2004, 279(1):779-787. [73] Lerouxel O, Mouille G, Andeme-Onzighi C, et al. Mutants in DEFECTIVE GLYCOSYLATION, an Arabidopsis homolog of an oligosaccharyltransferase complex subunit, show protein underglycosylation and defects in cell differentiation and growth[J]. Plant J, 2005, 42(4):455-468. [74] Koiwa H, Li F, McCully MG, et al. The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress[J]. Plant Cell, 2003, 15(10):2273-2284. [75] Su W, Liu Y, Xia Y, et al. Conserved endoplasmic reticulum-associated degradation system to eliminate mutated receptor-like kinases in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108 (2):870-875. [76] Lee HK, Cho SK, Son O, et al. Drought stress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic plants[J]. Plant Cell, 2013, 21(2):622-641. [77] Cui F, Liu LJ, Zhao QZ, et al. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance [J]. Plant Cell, 2012, 24(1):233-244. [78] van Nocker S, Walker JM, Vierstra RD. The Arabidopsis thaliana UBC7/13/14 genes encode a family of multiubiquitin chain-forming E2 enzymes[J]. J Biol Chem, 1996, 271(21):12150-12158. |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[3] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[4] | 展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展[J]. 生物技术通报, 2023, 39(8): 106-113. |
[5] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[6] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[7] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[8] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[9] | 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122. |
[10] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[11] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[12] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[13] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[14] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[15] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||