生物技术通报 ›› 2019, Vol. 35 ›› Issue (8): 170-177.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0095
于明香1, 宋水山1,2,3
收稿日期:2019-01-23
出版日期:2019-08-26
发布日期:2019-08-05
作者简介:于明香,女,硕士研究生,研究方向:分子生物学;E-mail:13821532703@163.com
YU Ming-xiang1, SONG Shui-shan1,2,3
Received:2019-01-23
Published:2019-08-26
Online:2019-08-05
摘要: 蛋白脂肪酰化修饰是蛋白翻译修饰的重要形式,在细胞信号转导、生长发育和代谢等过程中发挥着重要的作用。N-肉豆蔻酰化和S-酰化是脂肪酰化修饰的两种主要形式,长链的脂肪酸被共价结合到蛋白质上,使蛋白结构发生变化,从而影响细胞的一系列生理作用。近年来,相比于真菌和动物细胞中蛋白脂肪酰化修饰的功能研究而言,植物蛋白质脂酰化修饰及其生物学功能的研究相对较少,且两者并不完全相同,引起了研究人员的广泛关注。研究发现,植物蛋白质N-肉豆蔻酰化和S-酰化修饰过程中分别需要相对应的豆蔻酰基转移酶和S-酰基转移酶来催化,通过对两种转移酶缺失的突变体的研究发现,这两种酰基转移酶的活性与植物种子萌发、花期长短及表型正常化有关;N-肉豆蔻酰化和S-酰化蛋白通过疏水性的酰基键插入膜上相应的位置,进行膜锚定;参与调控植物生长、信号转导及免疫应答等过程。综述了近年来N-肉豆蔻酰化和S-酰化在植物细胞生物学功能中的研究进展,并对植物G蛋白偶联受体(GPCRs)脂质修饰在感知细菌信号分子N-酰基高丝氨酸内脂(AHLs)过程中的作用进行了讨论,旨在为采用遗传干预技术提高农作物生产、优质及抗逆提供理论指导。
于明香, 宋水山. 植物细胞中蛋白脂酰化修饰的生物学功能[J]. 生物技术通报, 2019, 35(8): 170-177.
YU Ming-xiang, SONG Shui-shan. Biological Functions of Protein Fatty Acylation in Plant Cells[J]. Biotechnology Bulletin, 2019, 35(8): 170-177.
| [1] Carr SA, Biemann K, Shoji S, et al.n-Tetradecanoyl is the NH2-terminal blocking group of the catalytic subunit of cyclic AMP-dependent protein kinase from bovine cardiac muscle[J]. Proceedings of the National Academy of Sciences, 1982, 79(20):6128-6131. [2] Aitken A, Cohen P, Santikarn S, et al.Identification of the NH2-terminal blocking group of calcineurin B as myristic acid[J]. FEBS Letters, 1982, 150(2):314-318. [3] Benetka W, Mehlmer N, Maurer-Stroh S, et al.Experimental testing of predicted myristoylation targets involved in asymmetric cell division and calcium-dependent signalling[J]. Cell Cycle, 2008, 7(23):3709-3719. [4] Towler DA, Eubanks SR, Towery DS, et al.Amino-terminal processing of proteins by N-myristoylation. Substrate specificity of N-myristoyl transferase[J]. Journal of Biological Chemistry, 1987, 262(3):1030-1036. [5] Zha J, Weiler S, Oh KJ, et al.Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis[J]. Science, 2000, 290(5497):1761-1765. [6] Martin DDO, Vilas GL, Prescher JA, et al.Rapid detection, discovery, and identification of post-translationally myristoylated proteins during apoptosis using a bio-orthogonal azidomyristate analog[J]. The FASEB Journal, 2008, 22(3):797-806. [7] Vilas GL, Corvi MM, Plummer GJ, et al.Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2(PAK2)potentiates late apoptotic events[J]. Proceedings of the National Academy of Sciences, 2006, 103(17):6542-6547. [8] Johnson DR, Bhatnagar RS, Knoll LJ, et al.Genetic and biochemical studies of protein N-myristoylation[J]. Annual Review of Biochemistry, 1994, 63(1):869-914. [9] Maurer-Stroh S, Eisenhaber B, Eisenhaber F.N-terminal N-myristoylation of proteins:refinement of the sequence motif and its taxon-specific differences1[J]. Journal of Molecular Biology, 2002, 317(4):523-540. [10] Qi Q, Rajala RVS, Anderson W, et al.Molecular cloning, genomic organization, and biochemical characterization of myristoyl-CoA:protein N-myristoyltransferase from Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2000, 275(13):9673-9683. [11] Yamauchi S, Fusada N, Hayashi H, et al.The consensus motif for N-myristoylation of plant proteins in a wheat germ cell-free translation system[J]. The FEBS Journal, 2010, 277(17):3596-3607. [12] Selvakumar P, Lakshmikuttyamma A, Shrivastav A, et al.Potential role of N-myristoyltransferase in cancer[J]. Progress in Lipid Research, 2007, 46(1):1-36. [13] Dyda F, Klein DC, Hickman AB.GCN5-related N-acetyltransfer-ases:a structural overview[J]. Annual Review of Biophysics and Biomolecular Structure, 2000, 29(1):81-103. [14] Pierre M, Traverso JA, Boisson B, et al.N-myristoylation regulates the SnRK1 pathway in Arabidopsis[J]. The Plant Cell, 2007, 19(9):2804-2821. [15] Renna L, Stefano G, Majeran W, et al.Golgi traffic and integrity depend on N-myristoyl transferase-1 in Arabidopsis[J]. The Plant Cell, 2013, 25(5):1756-1773. [16] Podell S, Gribskov M.Predicting N-terminal myristoylation sites in plant proteins[J]. BMC Genomics, 2004, 5(1):37. [17] Traverso JA, Micalella C, Martinez A, et al.Roles of N-terminal fatty acid acylations in membrane compartment partitioning:Arabidopsis h-type thioredoxins as a case study[J]. The Plant Cell, 2013, 25(3):1056-1077. [18] Takemoto D, Rafiqi M, Hurley U, et al.N-terminal motifs in some plant disease resistance proteins function in membrane attachment and contribute to disease resistance[J]. Molecular Plant-Microbe Interactions, 2012, 25(3):379-392. [19] Resh MD.Trafficking and signaling by fatty-acylated and prenylated proteins[J]. Nature Chemical Biology, 2006, 2(11):584. [20] McLaughlin S, Aderem A. The myristoyl-electrostatic switch:a modulator of reversible protein-membrane interactions[J]. Trends in Biochemical Sciences, 1995, 20(7):272-276. [21] Wright MH, Heal WP, Mann DJ, et al.Protein myristoylation in health and disease[J]. Journal of Chemical Biology, 2010, 3(1):19-35. [22] Mendoza D.Temperature sensing by membranes[J]. Annual Review of Microbiology, 2014, 68:101-116. [23] Ding Y, Lv J, Shi Y, et al.EGR2 phosphatase regulates OST1 kinase activity and freezing tolerance in Arabidopsis[J]. The EMBO Journal, 2018:e99819. [24] Vaandrager AB, Ehlert EME, Jarchau T, et al.N-terminal myristoylation is required for membrane localization of cGMP-dependent protein kinase type II[J]. Journal of Biological Chemistry, 1996, 271(12):7025-7029. [25] McLaughlin S, Aderem A. The myristoyl-electrostatic switch:a modulator of reversible protein-membrane interactions[J]. Trends in Biochemical Sciences, 1995, 20(7):272-276. [26] 许正平, 李伯良. 蛋白质的豆蔻酰化[J]. 生物化学与生物物理进展, 1998, 25(1):5-6. [27] Seykora JT, Myat MM, Allen LAH, et al.Molecular determinants of the myristoyl-electrostatic switch of MARCKS[J]. Journal of Biological Chemistry, 1996, 271(31):18797-18802. [28] Izon DJ, Punt JA, Xu L, et al.Notch1 regulates maturation of CD4+ and CD8+ thymocytes by modulating TCR signal strength[J]. Immunity, 2001, 14(3):253-264. [29] Koutelou E, Sato S, Tomomori-Sato C, et al.Neuralized-like 1(Neurl1)targeted to the plasma membrane by N-myristoylation regulates the Notch ligand Jagged1[J]. Journal of Biological Chemistry, 2008, 283(7):3846-3853. [30] Schmitt TM, Zúñiga-Pflücker JC.Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro[J]. Immunity, 2002, 17(6):749-756. [31] Grebe M, Xu J, Möbius W, et al.Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes[J]. Current Biology, 2003, 13(16):1378-1387. [32] 邵军丽, 龙跃生, 徐增富. 水稻小G蛋白OsRab5b的亚细胞定位研究[J]. 生物技术通报, 2015, 31(9):139-145. [33] Ishitani M, Liu J, Halfter U, et al.SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding[J]. The Plant Cell, 2000, 12(9):1667-1677. [34] Belda-Palazon B, Julian J, Coego A, et al.ABA inhibits myristoylation and induces shuttling of the RGLG 1 E3 ligase to promote nuclear degradation of PP2CA[J]. The Plant Journal, 2019. doi:10. 1111/tpj. 14274. [35] Asai S, Ichikawa T, Nomura H, et al.The variable domain of a plant calcium-dependent protein kinase(CDPK)confers subcellular localization and substrate recognition for NADPH oxidase[J]. Journal of Biological Chemistry, 2013, 288(20):14332-14340. [36] Ren H, Willige BC, Jaillais Y, et al.BRASSINOSTEROID-SIGNALING KINASE 3, a plasma membrane-associated scaffold protein involved in early brassinosteroid signaling[J]. PLoS Genetics, 2019, 15(1):e1007904. [37] Mei Y, Wang Y, Hu T, et al.Nucleocytoplasmic shuttling of geminivirus C4 protein Mediated by phosphorylation and myristoylation is critical for viral pathogenicity[J]. Molecular Plant, 2018, 11(12):1466-1481. [38] Yang S, Yang H, Grisafi P, et al.The BON/CPN gene family represses cell death and promotes cell growth in Arabidopsis[J]. The Plant Journal, 2006, 45(2):166-179. [39] Gou M, Zhang Z, Zhang N, et al.Opposing effects on two phases of defense responses from concerted actions of HEAT SHOCK COGNATE70 and BONZAI1 in Arabidopsis[J]. Plant Physiology, 2015, 169(3):2304-2323. [40] Batistič O, Sorek N, Schültke S, et al.Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis[J]. The Plant Cell, 2008, 20(5):1346-1362. [41] Hallak H, Muszbek L, Laposata M, et al.Covalent binding of arachidonate to G protein alpha subunits of human platelets[J]. Journal of Biological Chemistry, 1994, 269(7):4713-4716. [42] Greaves J, Chamberlain LH.DHHC palmitoyl transferases:substrate interactions and(patho)physiology[J]. Trends in Biochemical Sciences, 2011, 36(5):245-253. [43] Conibear E, Davis NG.Palmitoylation and depalmitoylation dynamics at a glance[J]. Journal of Cell Science, 2010, 123(23):4007-4010. [44] Zeidman R, Jackson CS, Magee AI.Protein acyl thioesterases[J]. Molecular Membrane Biology, 2009, 26(1-2):32-41. [45] Tomatis VM, Trenchi A, Gomez GA, et al.Acyl-protein thioesterase 2 catalizes the deacylation of peripheral membrane-associated GAP-43[J]. PLoS One, 2010, 5(11):e15045. [46] Li Y, Lin J, Li L, et al.DHHC-cysteine-rich domain S-acyltransferase protein family in rice:organization, phylogenetic relationship and expression pattern during development and stress[J]. Plant Systematics and Evolution, 2016, 302(10):1405-1417. [47] Schiefelbein J, Galway M, Masucci J, et al.Pollen tube and root-hair tip growth is disrupted in a mutant of Arabidopsis thaliana[J]. Plant Physiology, 1993, 103(3):979-985. [48] Ryan E, Grierson CS, Cavell A, et al.TIP1 is required for both tip growth and non-tip growth in Arabidopsis[J]. The New Phytologist, 1998, 138(1):49-58. [49] Qi B, Doughty J, Hooley R.A Golgi and tonoplast localized S-acyl transferase is involved in cell expansion, cell division, vascular patterning and fertility in Arabidopsis[J]. New Phytologist, 2013, 200(2):444-456. [50] Zhou LZ, Li S, Feng QN, et al.Protein S-ACYL transferase10 is critical for development and salt tolerance in Arabidopsis[J]. The Plant Cell, 2013, 25(3):1093-1107. [51] Lai J, Yu B, Cao Z, et al.Two homologous protein S-acyltransferases, PAT13 and PAT14, cooperatively regulate leaf senescence in Arabidopsis[J]. Journal of Experimental Botany, 2015, 66(20):6345-6353. [52] Zhao XY, Wang JG, Song SJ, et al.Precocious leaf senescence by functional loss of PROTEIN S-ACYL TRANSFERASE14 involves the NPR1-dependent salicylic acid signaling[J]. Scientific Reports, 2016, 6:20309. [53] Hornemann T.Palmitoylation and depalmitoylation defects[J]. Journal of Inherited Metabolic Disease, 2015, 38(1):179-186. [54] Maierhofer T, Diekmann M, Offenborn JN, et al. Site-and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid[J]. Science Signaling, 2014, 7(342):ra86-ra86. [55] Held K, Pascaud F, Eckert C, et al.Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex[J]. Cell Research, 2011, 21(7):1116. [56] Liu J, Ding P, Sun T, et al.Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases[J]. Plant Physiology, 2013, 161(4):2146-2158. [57] Hemsley PA, Weimar T, Lilley K, et al.Palmitoylation in plants:new insights through proteomics[J]. Plant Signaling & Behavior, 2013, 8(8):e25209. [58] Zeng Q, Wang X, Running MP.Dual lipid modification of Arabidopsis Gγ-subunits is required for efficient plasma membrane targeting[J]. Plant Physiology, 2007, 143(3):1119-1131. [59] Kim HS, Desveaux D, Singer AU, et al.The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation[J]. Proceedings of the National Academy of Sciences, 2005, 102(18):6496-6501. [60] Assmann SM. Plant G proteins, phytohormones,plasticity:three questions and a speculation[J]. Sci STKE, 2004, 2004;(264):re20. [61] Jones AM, Assmann SM.Plants:the latest model system for G-protein research[J]. EMBO Reports, 2004, 5(6):572-578. [62] Chen JG, Willard FS, Huang J, et al.A seven-transmembrane RGS protein that modulates plant cell proliferation[J]. Science, 2003, 301(5640):1728-1731. [63] Adjobo-Hermans MJW, Goedhart J, Gadella TWJ.Plant G protein heterotrimers require dual lipidation motifs of Gα and Gγ and do not dissociate upon activation[J]. Journal of Cell Science, 2006, 119(24):5087-5097. [64] Pandey S, Assmann SM.The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein α subunit GPA1 and regulates abscisic acid signaling[J]. The Plant Cell, 2004, 16(6):1616-1632. [65] Warpeha KM, Lateef SS, Lapik Y, et al.G-protein-coupled receptor 1, G-protein Gα-subunit 1, and prephenate dehydratase 1 are required for blue light-induced production of phenylalanine in etiolated Arabidopsis[J]. Plant Physiology, 2006, 140(3):844-855. [66] Liu X, Yue Y, Li B, et al.AG protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid[J]. Science, 2007, 315(5819):1712-1716. [67] Gao Y, Zeng Q, Guo J, et al.Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis[J]. The Plant Journal, 2007, 52(6):1001-1013. [68] 牛亚利, 赵芊, 张肖晗, 等. 赤霉素信号在非生物胁迫中的作用及其调控机制研究进展[J]. 生物技术通报, 2015, 31(10):31-37. [69] Johnston CA, Temple BR, Chen JG, et al.Comment on” AG protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid”[J]. Science, 2007, 318(5852):914-914. [70] Sturla L, Fresia C, Guida L, et al.LANCL2 is necessary for abscisic acid binding and signaling in human granulocytes and in rat insulinoma cells[J]. Journal of Biological Chemistry, 2009, 284(41):28045-28057. [71] Fresia C, Vigliarolo T, Guida L, et al.G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2[J]. Scientific Reports, 2016, 6:26658. [72] 宋水山. 酰基高丝氨酸内酯——细菌与真核生物之间信息交流的介导分子[J]. 自然科学进展, 2006, 16(8):933-939. [73] 宋水山, 贾振华, 邢志华, 等. 植物对细菌群体感应系统的反应[J]. 中国细胞生物学学报, 2005, 27(4):427-430. [74] Liu F, Bian ZR, Jia ZH, et al.The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals[J]. Molecular Plant-Microbe Interactions, 2012, 25(5):677-683. [75] 张哲, 张霞, 边子睿, 等. 3-羰基辛酰基高丝氨酸内酯诱导拟南芥根细胞Ca2+内流[J]. 植物生理学报, 2011, 47(9):872-878. |
| [1] | 崔俊美, 魏家萍, 董小云, 王莹, 郑国强, 刘自刚. PIP/PIPL:一类调控植物逆境响应和发育的植物内源性多肽[J]. 生物技术通报, 2023, 39(3): 35-42. |
| [2] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
| [3] | 雷春霞, 李灿辉, 陈永坤, 龚明. 马铃薯块茎形成的生理生化基础和分子机制[J]. 生物技术通报, 2022, 38(4): 44-57. |
| [4] | 李文姣, 张忠峰, 刘青, 孙洁, 杨利, 王兴军, 赵术珍. BRs在植物响应非生物胁迫中的作用[J]. 生物技术通报, 2022, 38(1): 228-235. |
| [5] | 聂甲玥, 杨文文, 樊红霞, 王幼平, 吴德伟. 植物Pep短肽的研究进展[J]. 生物技术通报, 2021, 37(9): 219-225. |
| [6] | 乌凤章, 王贺新. 蛋白质泛素化介导的植物低温胁迫反应[J]. 生物技术通报, 2021, 37(6): 225-235. |
| [7] | 王露露, 耿兴敏, 许世达. 乙烯受体在果实成熟及花衰老中的研究进展[J]. 生物技术通报, 2021, 37(3): 144-152. |
| [8] | 胡小倩, 张颖翌, 李鑫, 闫海芳. 植物中Remorin蛋白的研究进展[J]. 生物技术通报, 2020, 36(8): 136-143. |
| [9] | 杨锐佳, 张中保, 吴忠义. 植物转录因子TIFY家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2020, 36(12): 121-128. |
| [10] | 刘畅宇, 陈勋, 龙雨青, 陈娅, 刘湘丹, 周日宝. 乙烯生物合成及信号转导途径中介导花衰老相关基因的研究进展[J]. 生物技术通报, 2019, 35(3): 171-182. |
| [11] | 高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展[J]. 生物技术通报, 2018, 34(7): 1-13. |
| [12] | 冯寒骞, 李超. 生长素信号转导研究进展[J]. 生物技术通报, 2018, 34(7): 24-30. |
| [13] | 崔红利, 陈军, 侯义龙, 吴海歌, 秦松. 真核微藻蓝光受体及其功能研究进展[J]. 生物技术通报, 2017, 33(4): 51-62. |
| [14] | 王文然, 樊秀彩, 张文颖, 刘崇怀, 房经贵, 王晨. 果树赤霉素代谢与信号途径研究进展[J]. 生物技术通报, 2017, 33(11): 1-7. |
| [15] | 李先文, 李玲, 林阳阳, 周棋赢, 李先维, 姚天泽, 陈宏敏. 植物细胞叶绿体的低温反应[J]. 生物技术通报, 2016, 32(9): 1-6. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||