生物技术通报 ›› 2021, Vol. 37 ›› Issue (9): 219-225.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0025
收稿日期:
2021-01-07
出版日期:
2021-09-26
发布日期:
2021-10-25
作者简介:
聂甲玥,女,硕士研究生,研究方向:植物生物胁迫反应;E-mail: 基金资助:
NIE Jia-yue(), YANG Wen-wen, FAN Hong-xia, WANG You-ping, WU De-wei()
Received:
2021-01-07
Published:
2021-09-26
Online:
2021-10-25
摘要:
植物利用包括激素和短肽在内的各种内源信号分子,调节自身生长发育和对各种环境胁迫的抗性反应。Pep是植物细胞产生的一类由二十多个氨基酸构成的短肽分子,在被子植物中普遍存在。Pep能够被植物细胞膜上的受体蛋白PEPR识别,进而发挥多种生物学功能。目前的研究表明,Pep既在植物抵抗原菌侵染、昆虫噬咬等生物胁迫以及高盐等非生物胁迫中发挥重要作用,也调控着根生长、叶片衰老等植物生长发育过程。综述了近年来关于Pep的产生、受体识别、信号转导及其生物学功能等方面的研究进展,并对该领域尚待解决的一些科学问题和可能的实际应用方向进行了讨论和展望,以期为相关研究者提供参考。
聂甲玥, 杨文文, 樊红霞, 王幼平, 吴德伟. 植物Pep短肽的研究进展[J]. 生物技术通报, 2021, 37(9): 219-225.
NIE Jia-yue, YANG Wen-wen, FAN Hong-xia, WANG You-ping, WU De-wei. Recent Advances in Plant Pep Peptide[J]. Biotechnology Bulletin, 2021, 37(9): 219-225.
图1 拟南芥中Pep前体蛋白PRPPEP1-PROPEP8氨基酸序列的保守性分析 黑色下划线标记的是PROPEP加工后形成的成熟Pep序列的位置;红色下划线标记的是SSG-x2-G-x2-N基序的位置
Fig.1 Amino acid sequence conservation analysis of Pep precursor proteins PROPEP1-PROPEP8 from Arabidopsis thaliana The black underlines mark the position of mature Pep sequence after processing,the red underline marks the position of the SSG-x2-G-x2-N motif
图3 Pep-PEPR信号转导及其调控生长发育、免疫防御机制 前体蛋白PROPEP在适当Ca2+浓度下被CM4切割,进而释放成熟短肽Pep,此过程受到Pep信号途径的正反馈调节。成熟短肽Pep被其受体PEPR感知并特异性识别,使PEPR与共受体BAK1形成异源二聚体并将信号传递至下游胞质受体激酶BIK1,进而通过调节JA、ET、Auxin、ROS等信号途径影响植物的生长发育和抗性反应
Fig.3 Pep-PEPR signal transduction and the mechanisms underlying their regulation of plant growth,development and defense The precursor protein PROPEPs are cleaved by CM4 at appropriate Ca2 + concentration to release mature Peps,and this process is regulated by a positive feedback of Pep signaling pathway. The mature Peps are perceived by the receptor PEPRs,which enables PEPRs to form heterodimer with their co-receptor BAK1 and transduce the signal to cytoplasmic receptor kinase BIK1,thereby activating various downstream signal pathways,such as JA,ET,Auxin and ROS,to regulate plant growth and development,as well as plant defense responses
[1] |
Zhang J, Coaker G, Zhou JM, et al. Plant immune mechanisms:from reductionistic to holistic points of view[J]. Molecular Plant, 2020, 13(10):1358-1378.
doi: 10.1016/j.molp.2020.09.007 pmid: 32916334 |
[2] | 张杰, 董莎萌, 王伟, 等. 植物免疫研究与抗病虫绿色防控:进展、机遇与挑战[J]. 中国科学:生命科学, 2019, 49(11):1479-1507. |
Zhang J, Dong SM, Wang W, et al. Plant immunity and sustainable control of pests in China:Advances, opportunities and challenges[J]. Sci Sin:Vitae, 2019, 49(11):1479-1507. | |
[3] |
Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought[J]. Science, 2020, 368(6488):266-269.
doi: 10.1126/science.aaz7614 URL |
[4] |
Lotze MT, Zeh HJ, Rubartelli A, et al. The grateful dead:damage-associated molecular pattern molecules and reduction/oxidation regulate immunity[J]. Immunol Rev, 2007, 220(1):60-81.
doi: 10.1111/imr.2007.220.issue-1 URL |
[5] |
Jones JDG, Dangl JL. The plant immune system[J]. Nature, 2006, 444(7117):323-329.
doi: 10.1038/nature05286 URL |
[6] |
Wu Y, Zhou JM. Receptor-like kinases in plant innate immunity[J]. J Integ Plant Biol, 2013, 55(12):1271-1286.
doi: 10.1111/jipb.12123 URL |
[7] |
Huffaker A, Dafoe NJ, Schmelz EA. ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance[J]. Plant Physiol, 2011, 155(3):1325-1338.
doi: 10.1104/pp.110.166710 pmid: 21205619 |
[8] |
Lori M, van Verk MC, Hander T, et al. Evolutionary divergence of the plant elicitor peptides(Peps)and their receptors:interfamily incompatibility of perception but compatibility of downstream signalling[J]. J Exp Bot, 2015, 66(17):5315-5325.
doi: 10.1093/jxb/erv236 URL |
[9] |
Trivilin AP, Hartke S, Moraes MG. Components of different signalling pathways regulated by a new orthologue of AtPROPEP1 in tomato following infection by pathogens[J]. Plant Pathology, 2014, 63(5):1110-1118.
doi: 10.1111/ppa.2014.63.issue-5 URL |
[10] |
Klauser D, Desurmont GA, et al. The Arabidopsis Pep-PEPR system is induced by herbivore feeding and contributes to JA-mediated plant defence against herbivory[J]. J Exp Bot, 2015, 66(17):5327-5336.
doi: 10.1093/jxb/erv250 URL |
[11] |
Ross A, Yamada K, Hiruma K, et al. The Arabidopsis PEPR pathway couples local and systemic plant immunity[J]. EMBO J, 2014, 33(1):62-75.
doi: 10.1002/embj.201284303 URL |
[12] |
Huffaker A, Pearce G, Veyrat N, et al. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense[J]. PNAS, 2013, 110(14):5707-5712.
doi: 10.1073/pnas.1214668110 pmid: 23509266 |
[13] |
Yamaguchi Y, Huffaker A, et al. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis[J]. Plant Cell, 2012, 22(2):508-522.
doi: 10.1105/tpc.109.068874 URL |
[14] |
Gully K, Hander T, Boller T, et al. Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence[J]. Front Plant Sci, 2015, 6:14.
doi: 10.3389/fpls.2015.00014 pmid: 25667591 |
[15] |
Jing YP, Zheng XJ, et al. Danger-associated peptides interact with PIN-dependent local auxin distribution to inhibit root growth in Arabidopsis[J]. Plant Cell, 2019, 31(8):1767-1787.
doi: 10.1105/tpc.18.00757 URL |
[16] |
ten Hove CA, Bochdanovits Z, et al. Probing the roles of LRR RLK genes in Arabidopsis thaliana roots using a custom T-DNA insertion set[J]. Plant Mol Biol, 2011, 76(1/2):69-83.
doi: 10.1007/s11103-011-9769-x URL |
[17] |
Nakaminami K, Okamoto M, Higuchi-Takeuchi M, et al. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants[J]. PNAS, 2018, 115(22):5810-5815.
doi: 10.1073/pnas.1719491115 pmid: 29760074 |
[18] |
Huffaker A, Pearce G, Ryan CA. An endogenous peptide signal in Arabidopsis activates components of the innate immune response[J]. PNAS, 2006, 103(26):10098-10103.
pmid: 16785434 |
[19] |
Bartels S, Lori M, et al. The family of Peps and their precursors in Arabidopsis:differential expression and localization but similar induction of pattern-triggered immune responses[J]. J Exp Bot, 2013, 64(17):5309-5321.
doi: 10.1093/jxb/ert330 URL |
[20] |
Yamaguchi Y, Pearce G, Ryan CA. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells[J]. PNAS, 2006, 103(26):10104-10109.
pmid: 16785433 |
[21] |
Safaeizadeh M, Boller T. Differential and tissue-specific activation pattern of the AtPROPEP and AtPEPR genes in response to biotic and abiotic stress in Arabidopsis thaliana[J]. Plant Signal Behav, 2019, 14(5):e1590094.
doi: 10.1080/15592324.2019.1590094 URL |
[22] |
Bartels S, Boller T. Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development[J]. J Exp Bot, 2015, 66(17):5183-5193.
doi: 10.1093/jxb/erv180 URL |
[23] | Hander T, Fernández-Fernández ÁD, et al. Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides[J]. Science, 2019, 363(6433):eaar7486. |
[24] |
Coll NS, Vercammen D, et al. Arabidopsis type I metacaspases control cell death[J]. Science, 2010, 330(6009):1393-1397.
doi: 10.1126/science.1194980 URL |
[25] |
Shen WZ, Liu JE, Li JF. Type-II metacaspases mediate the processing of plant elicitor peptides in Arabidopsis[J]. Molecular Plant, 2019, 12(11):1524-1533.
doi: 10.1016/j.molp.2019.08.003 URL |
[26] | Zhu P, Yu XH, et al. Structural basis for Ca2+-dependent activation of a plant metacaspase[J]. Nat Communi, 2020, 11(1):1-9. |
[27] |
Ma CL, Guo J, et al. AtPEPTIDE RECEPTOR2 mediates the AtPEPTIDE1-induced cytosolic Ca2+ rise, which is required for the suppression of Glutamine Dumper gene expression in Arabidopsis roots[J]. J Integr Plant Biol, 2014, 56(7):684-694.
doi: 10.1111/jipb.12171 URL |
[28] |
Liu Z, Wu Y, et al. BIK1 interacts with PEPRs to mediate ethylene-induced immunity[J]. PNAS, 2013, 110(15):6205-6210.
doi: 10.1073/pnas.1215543110 URL |
[29] |
Tang J, Han ZF, Sun YD, et al. Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1[J]. Cell Research, 2015, 25(1):110-120.
doi: 10.1038/cr.2014.161 URL |
[30] |
Claus LAN, Savatin DV, Russinova E. The crossroads of receptor-mediated signaling and endocytosis in plants[J]. J Int Plant Biol, 2018, 60(9):827-840.
doi: 10.1111/jipb.12672 URL |
[31] |
Ortiz-Morea FA, Savatin DV, Dejonghe W, et al. Danger-associated peptide signaling in Arabidopsis requires clathrin[J]. PNAS, 2016, 113(39):11028-11033.
doi: 10.1073/pnas.1605588113 pmid: 27651494 |
[32] |
Collins CA, LaMontagne ED, et al. EPSIN1 modulates the plasma membrane abundance of FLAGELLIN SENSING2 for effective immune responses[J]. Plant Physiol, 2020, 182(4):1762-1775.
doi: 10.1104/pp.19.01172 pmid: 32094305 |
[33] |
Krol E, Mentzel T, Chinchilla D, et al. Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2[J]. J Biol Chem, 2010, 285(18):13471-13479.
doi: 10.1074/jbc.M109.097394 URL |
[34] |
Poncini L, Wyrsch I, Dénervaud Tendon V, et al. In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer[J]. PLoS One, 2017, 12(10):e0185808.
doi: 10.1371/journal.pone.0185808 URL |
[35] | Huang H, Gao H, Liu B, et al. bHLH13 regulates jasmonate-mediated defense responses and growth[J]. Evol Bioinform Online, 2018, 14:1176934318790265. |
[36] |
Kadota Y, Sklenar J, et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity[J]. Molecular Cell, 2014, 54(1):43-55.
doi: 10.1016/j.molcel.2014.02.021 URL |
[37] |
Jing YP, Shen N, et al. Danger-associated peptide regulates root immune responses and root growth by affecting ROS formation in Arabidopsis[J]. Int J Mol Sci, 2020, 21(13):4590.
doi: 10.3390/ijms21134590 URL |
[38] |
Zheng XJ, Kang S, Jing YP, et al. Danger-associated peptides close stomata by OST1-independent activation of anion channels in guard cells[J]. The Plant Cell, 2018, 30(5):1132-1146.
doi: 10.1105/tpc.17.00701 URL |
[39] |
Li J. Cell signaling leads the way[J]. J Integr Plant Biol, 2018, 60(9):743-744.
doi: 10.1111/jipb.12707 URL |
[40] |
Wang JJ, Wu DW, et al. Jasmonate action in plant defense against insects[J]. J Exp Bot, 2019, 70(13):3391-3400.
doi: 10.1093/jxb/erz174 URL |
[41] |
Yan C, Fan M, Yang M, et al. Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynjournal[J]. Mol Cell, 2018, 70(1):136-149. e7.
doi: 10.1016/j.molcel.2018.03.013 URL |
[42] |
Jones DS, John A, VanDerMolen KR, et al. CLAVATA signaling ensures reproductive development in plants across thermal environments[J]. Current Biology, 2021, 31(1):220-227.e5.
doi: 10.1016/j.cub.2020.10.008 URL |
[43] | Yu M, Li RL, Cui YN, et al. The RALF1-FERONIA interaction modulates endocytosis to mediate control of root growth in Arabidopsis[J]. Development, 2020, 147(13):dev189902. |
[44] |
Stegmann M, Monaghan J, Smakowska-Luzan E, et al. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling[J]. Science, 2017, 355(6322):287-289.
doi: 10.1126/science.aal2541 pmid: 28104890 |
[1] | 崔俊美, 魏家萍, 董小云, 王莹, 郑国强, 刘自刚. PIP/PIPL:一类调控植物逆境响应和发育的植物内源性多肽[J]. 生物技术通报, 2023, 39(3): 35-42. |
[2] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[3] | 雷春霞, 李灿辉, 陈永坤, 龚明. 马铃薯块茎形成的生理生化基础和分子机制[J]. 生物技术通报, 2022, 38(4): 44-57. |
[4] | 李文姣, 张忠峰, 刘青, 孙洁, 杨利, 王兴军, 赵术珍. BRs在植物响应非生物胁迫中的作用[J]. 生物技术通报, 2022, 38(1): 228-235. |
[5] | 乌凤章, 王贺新. 蛋白质泛素化介导的植物低温胁迫反应[J]. 生物技术通报, 2021, 37(6): 225-235. |
[6] | 曾福源, 苏泽辉, 周诗慧, 谢妙, 庞欢瑛. 溶藻弧菌PEPCK蛋白原核表达及其乙酰化、琥珀酰化修饰的鉴定[J]. 生物技术通报, 2021, 37(5): 84-91. |
[7] | 王露露, 耿兴敏, 许世达. 乙烯受体在果实成熟及花衰老中的研究进展[J]. 生物技术通报, 2021, 37(3): 144-152. |
[8] | 胡小倩, 张颖翌, 李鑫, 闫海芳. 植物中Remorin蛋白的研究进展[J]. 生物技术通报, 2020, 36(8): 136-143. |
[9] | 杨锐佳, 张中保, 吴忠义. 植物转录因子TIFY家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2020, 36(12): 121-128. |
[10] | 徐洲, 范晨龙, 丁燏. 溶藻弧菌PepA蛋白原核表达载体的构建及其乙酰化鉴定[J]. 生物技术通报, 2020, 36(12): 75-81. |
[11] | 于明香, 宋水山. 植物细胞中蛋白脂酰化修饰的生物学功能[J]. 生物技术通报, 2019, 35(8): 170-177. |
[12] | 刘畅宇, 陈勋, 龙雨青, 陈娅, 刘湘丹, 周日宝. 乙烯生物合成及信号转导途径中介导花衰老相关基因的研究进展[J]. 生物技术通报, 2019, 35(3): 171-182. |
[13] | 罗振鹏, 谢芳. 硝酸盐调控豆科植物与根瘤菌共生固氮的机制研究[J]. 生物技术通报, 2019, 35(10): 34-39. |
[14] | 高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展[J]. 生物技术通报, 2018, 34(7): 1-13. |
[15] | 冯寒骞, 李超. 生长素信号转导研究进展[J]. 生物技术通报, 2018, 34(7): 24-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||