生物技术通报 ›› 2021, Vol. 37 ›› Issue (11): 237-247.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0048
杨天杰1(), 张令昕1, 顾少华1, 潘子豪2, 江高飞1, 王世梅1, 韦中1, 徐阳春2(), 沈其荣1
收稿日期:
2021-01-12
出版日期:
2021-11-26
发布日期:
2021-12-03
作者简介:
杨天杰,女,博士,研究方向:土壤微生物与有机肥;E-mail: 基金资助:
YANG Tian-jie1(), ZHANG Ling-xin1, GU Shao-hua1, PAN Zi-hao2, JIANG Gao-fei1, WANG Shi-mei1, WEI Zhong1, XU Yang-chun2(), SHEN Qi-rong1
Received:
2021-01-12
Published:
2021-11-26
Online:
2021-12-03
摘要:
畜禽粪便和秸秆等农业有机废弃物中存在大量具有致病风险的人体和动植物病原菌,好氧堆肥高温期对病原菌的消减效果和影响病原菌存活的理化因子需探明。首先检测了市售25种商品有机肥料中病原菌存活的情况;其次考察了好氧堆肥高温阶段病原菌的灭活效果,并探究温度、pH、铵浓度对2种模式病原菌(大肠杆菌与青枯菌)存活的影响。调查的25种商品有机肥中有3个样品检测出存活的潜在病原菌,表明市售商品有机肥仍存在环境风险。好氧堆肥高温期对病原菌的灭活试验表明,高温期后堆体中仅检测出丰度极低的病原菌DNA。室内试验表明随着温度的升高,2种模式病原菌的存活能力减弱,灭活的时间缩短;pH对2种病原菌的灭活效果不同;铵浓度越高,对2种病原菌生长的抑制效果越强。高温期是好氧堆肥过程中病原菌灭活的重要阶段,堆肥高温期可有效消减畜禽粪便堆肥原料中的大部分病原菌,达到相关行业标准的要求。堆体温度、pH和铵浓度是影响病原菌存活的重要因素。
杨天杰, 张令昕, 顾少华, 潘子豪, 江高飞, 王世梅, 韦中, 徐阳春, 沈其荣. 好氧堆肥高温期灭活病原菌的效果和影响因素研究[J]. 生物技术通报, 2021, 37(11): 237-247.
YANG Tian-jie, ZHANG Ling-xin, GU Shao-hua, PAN Zi-hao, JIANG Gao-fei, WANG Shi-mei, WEI Zhong, XU Yang-chun, SHEN Qi-rong. Effects on Pathogen Inactivation at the Thermophilic Stage of Aerobic Composting and Its Impact Factors[J]. Biotechnology Bulletin, 2021, 37(11): 237-247.
样品编号 Sample No. | 生产原料 Raw materials | 堆肥工艺 Composting process | 堆肥时间 Composting time/d |
---|---|---|---|
1 | 牛粪、秸秆、营养剂Cow manure, straws, nutrient | 条垛式堆肥Windrow composting | 15-21 |
2 | 畜禽粪便、秸秆Livestock manure, straws | 条垛式堆肥Windrow composting | 15-21 |
3 | 牛粪、稻壳、猪粪Cow manure, rice husk, pig manure | 槽式堆肥Trough composting | >30 |
4 | 牛粪、秸秆Cow manure, straws | 条垛式堆肥Windrow composting | >30 |
5 | 牛粪、米糠、草木灰Cow manure, rice bran, plant ash | 条垛式堆肥Windrow composting | <15 |
6 | 牛粪、米糠、发酵菌Cow manure, rice bran, fermented microbe | 条垛式堆肥Windrow composting | 22-30 |
7 | 沼渣、猪粪、鸡粪、菇渣、甜叶菊渣Biogas residues, pig manure, chicken manure, mushroom residues, stevia residues | 条垛式堆肥Windrow composting | >30 |
8 | 鸡粪、羊粪Chicken manure, sheep manure | 静态通气堆肥Static aeration composting | 22-30 |
9 | 菌菇渣、牛粪、糠醛渣、梨渣Mushroom residues, cow manure, furfural residues, pear residues | 条垛式堆肥Windrow composting | 22-30 |
10 | 木薯渣、牛粪、菌菇渣Cassava residues, cow manure, mushroom residues | 条垛式堆肥Windrow composting | >30 |
11 | 木薯渣、鸡粪、菌菇渣Cassava residues, chicken manure, mushroom residues | 条垛式堆肥Windrow composting | 15-21 |
12 | 菌菇渣、羊粪、秸秆、猪粪、草木灰Mushroom residues, sheep manure, straws, pig manure, plant ash | 条垛式堆肥Windrow composting | >30 |
13 | 牛粪、木薯渣、猪粪、氨基酸Cow manure, cassava residue, pig manure, amino acids | 条垛式堆肥Windrow composting | 15-21 |
14 | 牛粪、糠醛渣、蘑菇渣、骨粉Cow manure, furfural residues, mushroom residues, bone meal | 条垛式堆肥Windrow composting | >30 |
15 | 鸡粪、稻壳、秸秆Chicken manure, rice husk, straws | 条垛式堆肥Windrow composting | 15-21 |
16 | 畜禽粪便、菌渣Livestock manure, bacterial residues | 条垛式堆肥Windrow composting | <15 |
17 | 鲜鸡粪、垫料鸡粪Fresh chicken manure, litter chicken manure | 条垛式堆肥Windrow composting | 22-30 |
18 | 畜禽粪便、食用菌培养棒Livestock manure, edible fungus culture sticks | 条垛式堆肥Windrow composting | 20-25 |
表1 商品有机肥信息表
Table 1 Information of commercial organic fertilizers
样品编号 Sample No. | 生产原料 Raw materials | 堆肥工艺 Composting process | 堆肥时间 Composting time/d |
---|---|---|---|
1 | 牛粪、秸秆、营养剂Cow manure, straws, nutrient | 条垛式堆肥Windrow composting | 15-21 |
2 | 畜禽粪便、秸秆Livestock manure, straws | 条垛式堆肥Windrow composting | 15-21 |
3 | 牛粪、稻壳、猪粪Cow manure, rice husk, pig manure | 槽式堆肥Trough composting | >30 |
4 | 牛粪、秸秆Cow manure, straws | 条垛式堆肥Windrow composting | >30 |
5 | 牛粪、米糠、草木灰Cow manure, rice bran, plant ash | 条垛式堆肥Windrow composting | <15 |
6 | 牛粪、米糠、发酵菌Cow manure, rice bran, fermented microbe | 条垛式堆肥Windrow composting | 22-30 |
7 | 沼渣、猪粪、鸡粪、菇渣、甜叶菊渣Biogas residues, pig manure, chicken manure, mushroom residues, stevia residues | 条垛式堆肥Windrow composting | >30 |
8 | 鸡粪、羊粪Chicken manure, sheep manure | 静态通气堆肥Static aeration composting | 22-30 |
9 | 菌菇渣、牛粪、糠醛渣、梨渣Mushroom residues, cow manure, furfural residues, pear residues | 条垛式堆肥Windrow composting | 22-30 |
10 | 木薯渣、牛粪、菌菇渣Cassava residues, cow manure, mushroom residues | 条垛式堆肥Windrow composting | >30 |
11 | 木薯渣、鸡粪、菌菇渣Cassava residues, chicken manure, mushroom residues | 条垛式堆肥Windrow composting | 15-21 |
12 | 菌菇渣、羊粪、秸秆、猪粪、草木灰Mushroom residues, sheep manure, straws, pig manure, plant ash | 条垛式堆肥Windrow composting | >30 |
13 | 牛粪、木薯渣、猪粪、氨基酸Cow manure, cassava residue, pig manure, amino acids | 条垛式堆肥Windrow composting | 15-21 |
14 | 牛粪、糠醛渣、蘑菇渣、骨粉Cow manure, furfural residues, mushroom residues, bone meal | 条垛式堆肥Windrow composting | >30 |
15 | 鸡粪、稻壳、秸秆Chicken manure, rice husk, straws | 条垛式堆肥Windrow composting | 15-21 |
16 | 畜禽粪便、菌渣Livestock manure, bacterial residues | 条垛式堆肥Windrow composting | <15 |
17 | 鲜鸡粪、垫料鸡粪Fresh chicken manure, litter chicken manure | 条垛式堆肥Windrow composting | 22-30 |
18 | 畜禽粪便、食用菌培养棒Livestock manure, edible fungus culture sticks | 条垛式堆肥Windrow composting | 20-25 |
病原菌Pathogen | 堆体Pile | 堆肥时间Composting time/d | OTU数量OTU abundance |
---|---|---|---|
白葡萄球菌 Saccharopolyspora rectivirgula | A | 0 | 176.0±83.44 a |
8 | 1.33±1.15 b | ||
B | 0 | 27.0±6.0 a | |
8 | 1.0±0 b | ||
鹿角球菌 Vagococcus lutrae | A | 0 | 4.5±2.12 a |
8 | 1.33±1.53 a | ||
B | 0 | 75.33±3.21 a | |
8 | 0 b | ||
Paenalcaligenes hominis | A | 0 | 0 |
8 | 0 | ||
B | 0 | 22.67±8.08 a | |
8 | 3.67±2.31 b | ||
鲍曼不动杆菌 Acinetobacter baumannii | A | 0 | 26±12.73 a |
8 | 0 b | ||
B | 0 | 6.0±3.61 a | |
8 | 0 b | ||
深红沙雷氏菌 Serratia rubidaea | A | 0 | 29.5±6.36 a |
8 | 0 b | ||
B | 0 | 2.0±1.0 a | |
8 | 0.33±0.58 a | ||
Chitinophaga terrae | A | 0 | 23.5±28.99 a |
8 | 0 a | ||
B | 0 | 0.67±0.58 a | |
8 | 0 a | ||
大肠埃希-志贺氏菌 Escherichia-Shigella | A | 0 | 15.5±0.71 a |
8 | 0 b | ||
B | 0 | 3.0±2.65 a | |
8 | 0 a | ||
纤维化纤维微细菌 Cellulosimicrobium cellulans | A | 0 | 6.0±5.65 a |
8 | 0.33±0.58 a | ||
B | 0 | 5.33±2.31 a | |
8 | 0 b | ||
嗜麦芽窄食单胞菌 Stenotrophomonas maltophilia | A | 0 | 13.5±3.54 a |
8 | 0 b | ||
B | 0 | 0.33±0.58 a | |
8 | 0 a | ||
抗热分枝杆菌 Mycobacterium thermoresistibile | A | 0 | 2.0±0 a |
8 | 2.0±3.46 a | ||
B | 0 | 0 a | |
8 | 0.33±0.58 a | ||
Pandoraea pnomenusa | A | 0 | 4.0±1.41 a |
8 | 0 b | ||
B | 0 | 0.67±0.58 a | |
8 | 0 a | ||
格氏李斯特菌 Listeria grayi | A | 0 | 2.5±0.71 a |
8 | 0 b | ||
B | 0 | 0.33±0.58 a | |
8 | 0 a |
表2 好氧堆肥过程中潜在病原菌OTU数量的变化
Table 2 Changes of potential pathogen OTUs during composting process
病原菌Pathogen | 堆体Pile | 堆肥时间Composting time/d | OTU数量OTU abundance |
---|---|---|---|
白葡萄球菌 Saccharopolyspora rectivirgula | A | 0 | 176.0±83.44 a |
8 | 1.33±1.15 b | ||
B | 0 | 27.0±6.0 a | |
8 | 1.0±0 b | ||
鹿角球菌 Vagococcus lutrae | A | 0 | 4.5±2.12 a |
8 | 1.33±1.53 a | ||
B | 0 | 75.33±3.21 a | |
8 | 0 b | ||
Paenalcaligenes hominis | A | 0 | 0 |
8 | 0 | ||
B | 0 | 22.67±8.08 a | |
8 | 3.67±2.31 b | ||
鲍曼不动杆菌 Acinetobacter baumannii | A | 0 | 26±12.73 a |
8 | 0 b | ||
B | 0 | 6.0±3.61 a | |
8 | 0 b | ||
深红沙雷氏菌 Serratia rubidaea | A | 0 | 29.5±6.36 a |
8 | 0 b | ||
B | 0 | 2.0±1.0 a | |
8 | 0.33±0.58 a | ||
Chitinophaga terrae | A | 0 | 23.5±28.99 a |
8 | 0 a | ||
B | 0 | 0.67±0.58 a | |
8 | 0 a | ||
大肠埃希-志贺氏菌 Escherichia-Shigella | A | 0 | 15.5±0.71 a |
8 | 0 b | ||
B | 0 | 3.0±2.65 a | |
8 | 0 a | ||
纤维化纤维微细菌 Cellulosimicrobium cellulans | A | 0 | 6.0±5.65 a |
8 | 0.33±0.58 a | ||
B | 0 | 5.33±2.31 a | |
8 | 0 b | ||
嗜麦芽窄食单胞菌 Stenotrophomonas maltophilia | A | 0 | 13.5±3.54 a |
8 | 0 b | ||
B | 0 | 0.33±0.58 a | |
8 | 0 a | ||
抗热分枝杆菌 Mycobacterium thermoresistibile | A | 0 | 2.0±0 a |
8 | 2.0±3.46 a | ||
B | 0 | 0 a | |
8 | 0.33±0.58 a | ||
Pandoraea pnomenusa | A | 0 | 4.0±1.41 a |
8 | 0 b | ||
B | 0 | 0.67±0.58 a | |
8 | 0 a | ||
格氏李斯特菌 Listeria grayi | A | 0 | 2.5±0.71 a |
8 | 0 b | ||
B | 0 | 0.33±0.58 a | |
8 | 0 a |
堆体理化性质 Physico-chemical properties | 病原菌数量Pathogen abundance | |||
---|---|---|---|---|
自由度 Df | F值 F value | P值 P value | ||
温度Temperature/℃ | 1 | 86.21 | < 0.001 | |
pH | 1 | 23.63 | < 0.01 | |
铵态氮含量 Ammonium content/(mg·g-1) | 1 | 0.12 | 0.74 | |
残差Residuals | 7 |
表3 堆体中病原菌数量与堆体理化性质的相关性
Table 3 Correlations between pathogen abundance and physico-chemical properties of composting piles
堆体理化性质 Physico-chemical properties | 病原菌数量Pathogen abundance | |||
---|---|---|---|---|
自由度 Df | F值 F value | P值 P value | ||
温度Temperature/℃ | 1 | 86.21 | < 0.001 | |
pH | 1 | 23.63 | < 0.01 | |
铵态氮含量 Ammonium content/(mg·g-1) | 1 | 0.12 | 0.74 | |
残差Residuals | 7 |
图4 温度对2种病原菌生长的影响 图中星号表示不同处理间差异显著(P < 0.05)
Fig.4 Effects of temperature on the biomass of two kinds of pathogens The asterisks in the figure indicate significant differences between different treatments (P < 0.05)
图5 pH对2种病原菌生长的影响 图中柱上不同字母表示不同处理间差异显著(P < 0.05),下同
Fig.5 Effects of pH on the biomass of two kinds of pathogens Different letters on the column in the figure indicate significant differences between different treatments (P < 0.05), the same below
[1] | 李国学, 张祖锡, 白瑛. 高温堆肥和沤肥碳、氮转化和杀灭病原菌的比较研究[J]. 北京农业大学学报, 1995(3): 286-290. |
Li GX, Zhang ZX, Bai Y. The different effects of HTC and WC on C, N transformation and pathogenic bacterial population[J]. Acta Agric Univ Pekin, 1995(3): 286-290. | |
[2] | 李金萍. 十字花科蔬菜根肿病菌检测技术及畜禽粪便传播病原菌研究[D]. 北京:中国农业科学院, 2013. |
Li JP. Studies on the detection technology of Plasmodiophora brassicae and animal manure as a transmission route of the pathogen[D]. Beijing:Chinese Academy of Agricultural Sciences, 2013. | |
[3] | 韦智获, 苏敏, 张凌云, 等. 不同有机肥对茶叶生长和土壤物理性质的影响[J]. 安徽农业科学, 2020, 48(13): 159-161, 178. |
Wei ZH, Su M, Zhang LY, et al. Effects of different orgainc fertilizers on tea growth and soil physical properties[J]. J Anhui Agric Sci, 2020, 48(13): 159-161, 178. | |
[4] | 郭鹏飞, 闫鹏科, 孙权. 有机肥施用量对‘赤霞珠’产量和品质的影响[J]. 湖南农业大学学报:自然科学版, 2020, 46(3): 303-309. |
Guo PF, Yan PK, Sun Q. Effect of the amount of organic fertilizer on the yield and quality of ‘Cabernet Sauvignon’[J]. J Hunan Agric Univ:Nat Sci, 2020, 46(3): 303-309. | |
[5] |
Soobhany N, Mohee R, Garg VK. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals:a review[J]. Waste Manag, 2017, 64: 51-62.
doi: 10.1016/j.wasman.2017.03.003 URL |
[6] |
Vaddella V, Pandey P, Cao WL, et al. Assessment of pathogen inactivation under sub-composting temperature in lab-scale compost piles[J]. J Food Res, 2018, 7(3): 64.
doi: 10.5539/jfr.v7n3p64 URL |
[7] |
Bradford SA, Morales VL, Zhang W, et al. Transport and fate of microbial pathogens in agricultural settings[J]. Crit Rev Environ Sci Technol, 2013, 43(8): 775-893.
doi: 10.1080/10643389.2012.710449 URL |
[8] |
Gurtler JB, Doyle MP, Erickson MC, et al. Composting to inactivate foodborne pathogens for crop soil application:a review[J]. J Food Prot, 2018, 81(11): 1821-1837.
doi: 10.4315/0362-028X.JFP-18-217 URL |
[9] |
Jiang XP, Morgan J, Doyle MP. Fate of Escherichia coli O157:H7 during composting of bovine manure in a laboratory-scale bioreactor[J]. J Food Prot, 2003, 66(1): 25-30.
doi: 10.4315/0362-028X-66.1.25 URL |
[10] |
Hijikata N, Tezuka R, Kazama S, et al. Bactericidal and virucidal mechanisms in the alkaline disinfection of compost using calcium lime and ash[J]. J Environ Manag, 2016, 181: 721-727.
doi: 10.1016/j.jenvman.2016.08.026 URL |
[11] |
Erickson MC, Liao J, Jiang XP, et al. Inactivation of pathogens during aerobic composting of fresh and aged dairy manure and different carbon amendments[J]. J Food Prot, 2014, 77(11): 1911-1918.
doi: 10.4315/0362-028X.JFP-14-194 URL |
[12] |
Erickson MC, Liao JY. Exploratory study of the application of smoke aerosols to manure-based composting materials to reduce prevalence of Salmonella[J]. J Food Prot, 2019, 82(5): 804-809.
doi: 10.4315/0362-028X.JFP-18-327 URL |
[13] |
Wei Z, Huang JF, Tan SY, et al. The congeneric strain Ralstonia pickettii QL-A6 of Ralstonia solanacearum as an effective biocontrol agent for bacterial wilt of tomato[J]. Biol Control, 2013, 65(2): 278-285.
doi: 10.1016/j.biocontrol.2012.12.010 URL |
[14] |
Wagner AO, Praeg N, Reitschuler C, et al. Effect of DNA extraction procedure, repeated extraction and ethidium monoazide(EMA)/propidium monoazide(PMA)treatment on overall DNA yield and impact on microbial fingerprints for bacteria, fungi and archaea in a reference soil[J]. Appl Soil Ecol, 2015, 93: 56-64.
doi: 10.1016/j.apsoil.2015.04.005 URL |
[15] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
Bao SD. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: Chinese Agriculture Press, 2000. | |
[16] |
Larney FJ, Turkington TK. Fate of Fusarium graminearum and other Fusarium species during composting of beef cattle feedlot manure[J]. Compost Sci Util, 2009, 17(4): 247-256.
doi: 10.1080/1065657X.2009.10702431 URL |
[17] |
Weil JD, Cutter CN, Beelman RB, et al. Inactivation of human pathogens during phase II composting of manure-based mushroom growth substrate[J]. J Food Prot, 2013, 76(8): 1393-1400.
doi: 10.4315/0362-028X.JFP-12-508 URL |
[18] |
Wichuk KM, McCartney D. A review of the effectiveness of current time-temperature regulations on pathogen inactivation during composting[J]. J Environ Eng Sci, 2007, 6(5): 573-586.
doi: 10.1139/S07-011 URL |
[19] | 廖汉鹏, 陈志, 余震, 等. 有机固体废物超高温好氧发酵技术及其工程应用[J]. 福建农林大学学报:自然科学版, 2017, 46(4): 439-444. |
Liao HP, Chen Z, Yu Z, et al. Development of hperthermophinic aerobic composting and its engineering applications in organic solid wastes[J]. J Fujian Agric For Univ:Nat Sci Ed, 2017, 46(4): 439-444. | |
[20] | Cronjé AL. Ammonia emissions and pathogen inactivation during controlled composting of pig manure[D]. Birmingham:University of Birmingham, 2004. |
[21] |
Singh R, Kim J, Jiang X. Heat inactivation of Salmonella spp. in fresh poultry compost by simulating early phase of composting process[J]. J Appl Microbiol, 2012, 112(5): 927-935.
doi: 10.1111/j.1365-2672.2012.05268.x pmid: 22372919 |
[22] | 杨琼, 廖森泰, 邢东旭, 等. 改良蚕沙静态好氧堆肥的发酵温度及对家蚕病原菌的灭活效果[J]. 蚕业科学, 2012, 38(6): 1018-1023. |
Yang Q, Liao ST, Xing DX, et al. Fermentation temperature of improved silkworm excrement static aerobic composting and effect on silkworm pathogen inactivation[J]. Sci Seric, 2012, 38(6): 1018-1023. | |
[23] |
Xu Y, Zhao Z, Tong WH, et al. An acid-tolerance response system protecting exponentially growing Escherichia coli[J]. Nat Commun, 2020, 11: 1496.
doi: 10.1038/s41467-020-15350-5 URL |
[24] |
Li S, Liu Y, Wang J, et al. Soil acidification aggravates the occurrence of bacterial wilt in South China[J]. Front Microbiol, 2017, 8: 703.
doi: 10.3389/fmicb.2017.00703 URL |
[25] |
McKinley JW, Parzen RE, Mercado Guzmán Á. Ammonia inactivation of Ascaris ova in ecological compost by using urine and ash[J]. Appl Environ Microbiol, 2012, 78(15): 5133-5137.
doi: 10.1128/AEM.00631-12 URL |
[26] | 白同日格. 牛粪堆肥中添加石灰氮对金黄色葡萄球菌的杀灭效果及堆肥发酵影响的研究[D]. 呼和浩特:内蒙古农业大学, 2011. |
Bai T. The effect of adding lime nitrogen to cattle manure composting on killing impact of S. aureus and composting[D]. Hohhot:Inner Mongolia Agricultural University, 2011. | |
[27] |
Usui M, Kawakura M, Yoshizawa N, et al. Survival and prevalence of Clostridium difficile in manure compost derived from pigs[J]. Anaerobe, 2017, 43: 15-20.
doi: 10.1016/j.anaerobe.2016.11.004 URL |
[28] |
Erickson MC, Liao J, Ma L, et al. Inactivation of Salmonella spp. in cow manure composts formulated to different initial C:N ratios[J]. Bioresour Technol, 2009, 100(23): 5898-5903.
doi: 10.1016/j.biortech.2009.06.083 URL |
[29] |
Singh R, Kim J, Shepherd MW, et al. Determining thermal inactivation of Escherichia coli O157:H7 in fresh compost by simulating early phases of the composting process[J]. Appl Environ Microbiol, 2011, 77(12): 4126-4135.
doi: 10.1128/AEM.02873-10 URL |
[1] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[2] | 丁晓艳, 王越, 王宁, 李婉婷, 丁国春, 李季. 外接堆肥微生物在餐厨废弃物好氧堆肥中的应用[J]. 生物技术通报, 2022, 38(5): 47-55. |
[3] | 杨瑞先, 刘萍, 王祖华, 阮宝硕, 汪智达. 牡丹根腐病原菌拮抗细菌抑菌活性物质分析[J]. 生物技术通报, 2022, 38(2): 57-66. |
[4] | 高惠惠, 贾晨波, 韩琴, 苏建宇, 徐春燕. 宁杞7号枸杞根腐病发生的微生物学机制[J]. 生物技术通报, 2022, 38(12): 244-251. |
[5] | 张晨, 张佟佟, 刘海萍. 高活性和高热稳定性乙烯合成酶的筛选和鉴定[J]. 生物技术通报, 2022, 38(11): 269-276. |
[6] | 周怀烨, 周碧瑶, 苏涛. β-果糖苷酶抑制子的研究进展[J]. 生物技术通报, 2020, 36(12): 137-145. |
[7] | 郭晓平, 刘兴飞, 李晓楠, 吕雪茹, 郤少梅, 田园. 泰山黄精内生细菌的抗菌活性研究[J]. 生物技术通报, 2020, 36(11): 48-54. |
[8] | 王雪寒, 马强, 田媛, 胡靖, 刘惠荣. 内蒙古呼伦贝尔地区的可培养黏细菌及其抗菌活性[J]. 生物技术通报, 2019, 35(9): 224-233. |
[9] | 潘旭耀, 魏韬, 谭柱豪, 林龙镇, 郭丽琼, 林俊芳. 芽孢杆菌种间原生质体融合选育高产Surfactin新菌株[J]. 生物技术通报, 2019, 35(8): 238-245. |
[10] | 王锐洁, 关萍, 刘筱, 杨淑君, 姬拉拉, 邓小红, 王健健. 遮阴与施磷对金荞麦生长及荧光参数的影响[J]. 生物技术通报, 2019, 35(6): 32-38. |
[11] | 王霞, 薛林贵, 张晓华, 何小燕, 范桃桃, 尚海. 菘蓝内生细菌的分离、筛选和鉴定[J]. 生物技术通报, 2018, 34(3): 163-169. |
[12] | 郭倩倩, 杨倩倩, 宋丽敏, 梁文星. 植物病理学领域蛋白乙酰化修饰研究进展[J]. 生物技术通报, 2018, 34(2): 96-101. |
[13] | 陈佳妮, 林丽春, 徐年军, 张琳, 孙雪. CO2浓度对雨生红球藻生理生化指标的影响[J]. 生物技术通报, 2018, 34(1): 239-246. |
[14] | 王瑞波. 水杨酸对镉胁迫小麦叶绿素荧光参数的影响[J]. 生物技术通报, 2017, 33(7): 96-99. |
[15] | 刘晓瑜, 马玉超. 生防链霉菌SSD49的绿色荧光蛋白标记及其在毛白杨组培苗中的定殖[J]. 生物技术通报, 2016, 32(9): 197-202. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||