生物技术通报 ›› 2021, Vol. 37 ›› Issue (12): 227-234.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0616
收稿日期:
2021-05-12
出版日期:
2021-12-26
发布日期:
2022-01-19
作者简介:
魏文青,女,硕士研究生,研究方向:合成生物学;E-mail: 基金资助:
WEI Wen-qing(), XIE Ze-xiong()
Received:
2021-05-12
Published:
2021-12-26
Online:
2022-01-19
摘要:
有丝分裂是真核生物细胞遗传和增殖发育的基础,主要分为S期和M期,其中M期是细胞分裂和遗传物质传递的重要过程。染色体的正确分离受到多种细胞机制的高度调控,是保证子代细胞遗传信息完整性的关键。本文主要以典型的真核生物酵母细胞为研究模型,综述了酵母在有丝分裂过程中染色体分离异常形成非整倍体的具体机制。分别包括纺锤体组装监控机制失效、姐妹染色单体黏结蛋白缺陷、动粒-纺锤体微管结合错误和多中心体途径4个方面。并讨论了非整倍体现象对酵母细胞造成的影响,以期更好的理解非整倍体酵母的生理及遗传特性。
魏文青, 谢泽雄. 酵母有丝分裂染色体异常分离机制[J]. 生物技术通报, 2021, 37(12): 227-234.
WEI Wen-qing, XIE Ze-xiong. Mechanism of Abnormal Chromosomal Segregation in Yeast Mitosis[J]. Biotechnology Bulletin, 2021, 37(12): 227-234.
图1 酵母非整倍体的形成及影响 酵母细胞有丝分裂过程异常会导致非整倍体的形成,对细胞的应激、生长发育、生物进化和疾病的发生都会产生影响
Fig.1 Formation and influence of yeast aneuploidy Abnormal mitosis process in yeast cells will lead to the formation of aneuploidy,which will affect cell stress,growth and development,biological evolution and the occurrence of diseases
图2 姐妹染色单体黏结蛋白与纺锤体监控机制 Smc1、Smc3、Rad21和SA/Stg2共同组成染色单体黏结蛋白复合物,形成单环模型围在着丝粒的外围,捕获姐妹染色单体调节聚合作用。若动粒-微管在有丝分裂前中期结合不正确,则有丝分裂检查点复合物(MCC)与促进后期复合体(APC)结合,激活纺锤体组装监控机制阻滞细胞有丝分裂进程
Fig.2 Sister chromatid adhesion protein and spindle monitoring mechanism Smc1,Smc3,Rad21 and SA/Stg2 together form a chromatid adhesive protein complex,forming a single ring model around the centromere,capturing sister chromatid to regulate polymerization. If the kinetochore-microtubule combination is not correct in the pre-middle stage of mitosis,the mitotic checkpoint complex(MCC)binds to the advanced-stage complex(APC)to activate the spindle assembly monitoring mechanism to block the process of cell mitosis
图3 动粒-微管结合错误和多中心体途径 a:有丝分裂过程中动粒-微管不同结合方式;两极连接是细胞完成正常有丝分裂过程动粒-微管连接方式;Monotelic连接、Syntelic连接和Merotelic连接都会引起染色体分离异常导致非整倍体酵母细胞的产生;b:当细胞中含有两个以上中心体存在时,不同方向的中心体通过微管与动粒结合,染色体因受力不均匀会产生不均等分离形成非整倍体细胞
Fig.3 Miscellaneous kinetochore-microtubule binding and polycentric pathway a:During mitosis,the kinetochore-microtubules are combined in different ways;the bipolar connection is the kinetochore-microtubule connection that the cell completes the normal mitosis process;the Monotic connection,Syntelic connection and Merotelic connection will cause abnormal chromosome segregation and lead to the production of aneuploid yeast cells. b:When there are more than two centrosomes in a cell,centrosomes in different directions are combined with the kinetochore through microtubules,and the chromosomes will be unevenly separated due to uneven force to form aneuploid cells
[1] |
Todd RT, Forche A, Selmecki A. Ploidy variation in fungi:polyploidy, aneuploidy, and genome evolution[J]. Microbiol Spectr, 2017, 5(4). DOI: 10.1128/microbiolspec.funk-0051-2016.
doi: 10.1128/microbiolspec.funk-0051-2016 |
[2] |
Weaver BA, Cleveland DW. Does aneuploidy cause cancer?[J]. Curr Opin Cell Biol, 2006, 18(6):658-667.
pmid: 17046232 |
[3] |
Ohbayashi T, Oikawa K, Yamada K, et al. Unscheduled overexpression of human WAPL promotes chromosomal instability[J]. Biochem Biophys Res Commun, 2007, 356(3):699-704.
doi: 10.1016/j.bbrc.2007.03.037 URL |
[4] |
Xie ZX, Li BZ, Mitchell LA, et al. “Perfect” designer chromosome V and behavior of a ring derivative[J]. Science, 2017, 355(6329):eaaf4704.
doi: 10.1126/science.aaf4704 URL |
[5] |
Selmecki AM, Maruvka YE, Richmond PA, et al. Polyploidy can drive rapid adaptation in yeast[J]. Nature, 2015, 519(7543):349-352.
doi: 10.1038/nature14187 URL |
[6] |
Deutschbauer AM, Jaramillo DF, Proctor M, et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast[J]. Genetics, 2005, 169(4):1915-1925.
pmid: 15716499 |
[7] |
Torres EM, Williams BR, Amon A. Aneuploidy:cells losing their balance[J]. Genetics, 2008, 179(2):737-746.
doi: 10.1534/genetics.108.090878 URL |
[8] |
Beach RR, Ricci-Tam C, Brennan CM, et al. Aneuploidy causes non-genetic individuality[J]. Cell, 2017, 169(2):229-242.e21.
doi: 10.1016/j.cell.2017.03.021 URL |
[9] |
Harigaya Y, Yamamoto M. Molecular mechanisms underlying the mitosis-meiosis decision[J]. Chromosome Res, 2007, 15(5):523-537.
pmid: 17674143 |
[10] |
Yamamoto M. Regulation of meiosis in fission yeast[J]. Cell Struct Funct, 1996, 21(5):431-436.
pmid: 9118252 |
[11] | 吕磊. 卵巢癌非整倍体细胞发生途径及其机制的研究[D]. 合肥:中国科学技术大学, 2011. |
Lv L. The pathway and mechanism of aneuploidy generation during ovarian cancer neoplastic progression[D]. Hefei:University of Science and Technology of China, 2011. | |
[12] |
Thompson SL, Bakhoum SF, Compton DA. Mechanisms of chromosomal instability[J]. Curr Biol, 2010, 20(6):R285-R295.
doi: 10.1016/j.cub.2010.01.034 URL |
[13] | Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time[J]. Nat Rev Mol Cell Biol, 2007, 8(5):379-393. |
[14] |
Dorsett D. Cohesin:genomic insights into controlling gene transcription and development[J]. Curr Opin Genet Dev, 2011, 21(2):199-206.
doi: 10.1016/j.gde.2011.01.018 pmid: 21324671 |
[15] |
Indjeian VB, Murray AW. Budding yeast mitotic chromosomes have an intrinsic bias to biorient on the spindle[J]. Curr Biol, 2007, 17(21):1837-1846.
pmid: 17980598 |
[16] | Mehta GD, Rizvi SM, Ghosh SK. Cohesin:a guardian of genome integrity[J]. Biochim Biophys Acta, 2012, 1823(8):1324-1342. |
[17] |
Losada A, Hirano T. Dynamic molecular linkers of the genome:the first decade of SMC proteins[J]. Genes Dev, 2005, 19(11):1269-1287.
doi: 10.1101/gad.1320505 URL |
[18] |
Ivanov D, Schleiffer A, Eisenhaber F, et al. Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion[J]. Curr Biol, 2002, 12(4):323-328.
doi: 10.1016/S0960-9822(02)00681-4 URL |
[19] |
Zhang J, Shi X, Li Y, et al. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast[J]. Mol Cell, 2008, 31(1):143-151.
doi: 10.1016/j.molcel.2008.06.006 URL |
[20] | Huang CE, Milutinovich M, Koshland D. Rings, bracelet or snaps:fashionable alternatives for Smc complexes[J]. Philos Trans Royal Soc Lond Ser B Biol Sci, 2005, 360(1455):537-542. |
[21] |
Zhang N, Kuznetsov SG, Sharan SK, et al. A handcuff model for the cohesin complex[J]. J Cell Biol, 2008, 183(6):1019-1031.
doi: 10.1083/jcb.200801157 URL |
[22] |
Kim N. How might cohesin hold sister chromatids together?[J]. Phil Trans R Soc B, 2005, 360(1455):483-496.
doi: 10.1098/rstb.2004.1604 URL |
[23] |
Surcel A, Koshland D, Ma H, et al. Cohesin interaction with centromeric minichromosomes shows a multi-complex rod-shaped structure[J]. PLoS One, 2008, 3(6):e2453.
doi: 10.1371/journal.pone.0002453 URL |
[24] |
Allshire RC. Centromeres, checkpoints and chromatid cohesion[J]. Curr Opin Genet Dev, 1997, 7(2):264-273.
pmid: 9115433 |
[25] |
Li R, Murray AW. Feedback control of mitosis in budding yeast[J]. Cell, 1991, 66(3):519-531.
pmid: 1651172 |
[26] |
May KM, Paldi F, Hardwick KG. Fission yeast Apc15 stabilizes MCC-Cdc20-APC/C complexes, ensuring efficient Cdc20 ubiquitination and checkpoint arrest[J]. Curr Biol, 2017, 27(8):1221-1228.
doi: 10.1016/j.cub.2017.03.013 URL |
[27] |
Chung E, Chen RH. Spindle checkpoint requires Mad1-bound and Mad1-free Mad2[J]. Mol Biol Cell, 2002, 13(5):1501-1511.
doi: 10.1091/mbc.02-01-0003 URL |
[28] |
Castro A, Bernis C, Vigneron S, et al. The anaphase-promoting complex:a key factor in the regulation of cell cycle[J]. Oncogene, 2005, 24(3):314-325.
pmid: 15678131 |
[29] |
Fraschini R, Beretta A, Sironi L, et al. Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores[J]. EMBO J, 2001, 20(23):6648-6659.
pmid: 11726501 |
[30] |
Yang M, Li B, Liu CJ, et al. Insights into Mad2 regulation in the spindle checkpoint revealed by the crystal structure of the symmetric Mad2 dimer[J]. PLoS Biol, 2008, 6(3):e50.
doi: 10.1371/journal.pbio.0060050 URL |
[31] | 晁春江. 裂殖酵母中核仁蛋白Dnt1调控后期促进复合物功能的研究[D]. 厦门:厦门大学, 2018. |
Chao CJ. A study on the regulation of anaphase-promoting complex/cyclosome by nucleolar protein Dnt1 in fission yeast[D]. Xiamen:Xiamen University, 2018. | |
[32] | Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes[J]. Biochim Biophys Acta, 2004, 1695(1/2/3):189-207. |
[33] |
Reddy SK, Rape M, Margansky WA, et al. Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation[J]. Nature, 2007, 446(7138):921-925.
doi: 10.1038/nature05734 URL |
[34] |
Kim ST, Xu B, Kastan MB. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage[J]. Genes Dev, 2002, 16(5):560-570.
doi: 10.1101/gad.970602 URL |
[35] |
Watrin E, Peters JM. The cohesin complex is required for the DNA damage-induced G2/M checkpoint in mammalian cells[J]. EMBO J, 2009, 28(17):2625-2635.
doi: 10.1038/emboj.2009.202 pmid: 19629043 |
[36] |
Lopes CS, Sunkel CE. The spindle checkpoint:from normal cell division to tumorigenesis[J]. Arch Med Res, 2003, 34(3):155-165.
doi: 10.1016/S0188-4409(03)00024-9 URL |
[37] |
de Voer RM, Hoogerbrugge N, Kuiper RP. Spindle-assembly checkpoint and gastrointestinal cancer[J]. N Engl J Med, 2011, 364(13):1279-1280.
doi: 10.1056/NEJMc1101053 URL |
[38] |
Lim HH, Zhang T, Surana U. Regulation of centrosome separation in yeast and vertebrates:common threads[J]. Trends Cell Biol, 2009, 19(7):325-333.
doi: 10.1016/j.tcb.2009.03.008 URL |
[39] |
Lampson MA, Renduchitala K, Khodjakov A, et al. Correcting improper chromosome-spindle attachments during cell division[J]. Nat Cell Biol, 2004, 6(3):232-237.
doi: 10.1038/ncb1102 URL |
[40] | 胡逸超, 许雨晨, 鹿宗贵, 等. Dam1复合体在动粒-微管互作中的作用[J]. 基因组学与应用生物学, 2015, 34(4):896-901. |
Hu YC, Xu YC, Lu ZG, et al. Functions of Dam1 complex in outer kinetochore[J]. Genom Appl Biol, 2015, 34(4):896-901. | |
[41] |
Liu X, McLeod I, Anderson S, et al. Molecular analysis of kinetochore architecture in fission yeast[J]. EMBO J, 2005, 24(16):2919-2930.
doi: 10.1038/sj.emboj.7600762 URL |
[42] |
McAinsh AD, Tytell JD, Sorger PK. Structure, function, and regulation of budding yeast kinetochores[J]. Annu Rev Cell Dev Biol, 2003, 19:519-539.
pmid: 14570580 |
[43] | 梁前进. 着丝粒和动粒[J]. 生物学通报, 2012, 47(4):1-4. |
Liang QJ. Centromere and kinetochore[J]. Bull Biol, 2012, 47(4):1-4. | |
[44] |
Taylor SS, Scott MIF, Holland AJ. The spindle checkpoint:a quality control mechanism which ensures accurate chromosome segregation[J]. Chromosom Res, 2004, 12(6):599-616.
doi: 10.1023/B:CHRO.0000036610.78380.51 URL |
[45] |
Cheeseman IM, Brew C, Wolyniak M, et al. Implication of a novel multiprotein Dam1p complex in outer kinetochore function[J]. J Cell Biol, 2001, 155(7):1137-1145.
pmid: 11756468 |
[46] |
Meraldi P, Draviam VM, Sorger PK. Timing and checkpoints in the regulation of mitotic progression[J]. Dev Cell, 2004, 7(1):45-60.
doi: 10.1016/j.devcel.2004.06.006 URL |
[47] | 李强, 吴燕华, 闫晓梅, 等. 极光(aurora)激酶在细胞有丝分裂和肿瘤形成中的重要功能[J]. 生命科学, 2005, 17(5):424-432 |
Li Q, Wu YH, Yan XM, et al. The key functions of aurora kinases during cell mitosis and tumorigenesis[J]. Chin Bull Life Sci, 2005, 17(5):424-432 | |
[48] |
Tanaka TU, Rachidi N, Janke C, et al. Evidence that the Ipl1-Sli15(Aurora kinase-INCENP)complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections[J]. Cell, 2002, 108(3):317-329.
doi: 10.1016/S0092-8674(02)00633-5 URL |
[49] |
Cheeseman IM, Anderson S, Jwa M, et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p[J]. Cell, 2002, 111(2):163-172.
pmid: 12408861 |
[50] |
Gregan J, Polakova S, Zhang LJ, et al. Merotelic kinetochore attachment:causes and effects[J]. Trends Cell Biol, 2011, 21(6):374-381.
doi: 10.1016/j.tcb.2011.01.003 pmid: 21306900 |
[51] | Bettencourt-Dias M, Glover DM. Centrosome biogenesis and function:centrosomics brings new understanding[J]. Nat Rev Mol Cell Biol, 2007, 8(6):451-463. |
[52] | Lingle WL, Salisbury JL. The role of the centrosome in the development of malignant tumors[J]. Curr Top Dev Biol, 1999, 49:313-329. |
[53] |
Brinkley BR. Managing the centrosome numbers game:from chaos to stability in cancer cell division[J]. Trends Cell Biol, 2001, 11(1):18-21.
pmid: 11146294 |
[54] |
Nigg EA. Centrosome aberrations:cause or consequence of cancer progression?[J]. Nat Rev Cancer, 2002, 2(11):815-825.
doi: 10.1038/nrc924 URL |
[55] |
Ganem NJ, Godinho SA, Pellman D. A mechanism linking extra centrosomes to chromosomal instability[J]. Nature, 2009, 460(7252):278-282.
doi: 10.1038/nature08136 URL |
[56] |
Wang HF, Takenaka K, Nakanishi A, et al. BRCA2 and nucleophosmin coregulate centrosome amplification and form a complex with the Rho effector kinase ROCK2[J]. Cancer Res, 2011, 71(1):68-77.
doi: 10.1158/0008-5472.CAN-10-0030 URL |
[57] |
Basto R, Brunk K, Vinadogrova T, et al. Centrosome amplification can initiate tumorigenesis in flies[J]. Cell, 2008, 133(6):1032-1042.
doi: 10.1016/j.cell.2008.05.039 URL |
[58] |
Habedanck R, Stierhof YD, Wilkinson CJ, et al. The Polo kinase Plk4 functions in centriole duplication[J]. Nat Cell Biol, 2005, 7(11):1140-1146.
pmid: 16244668 |
[59] |
Meraldi P, Lukas J, Fry AM, et al. Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A[J]. Nat Cell Biol, 1999, 1(2):88-93.
pmid: 10559879 |
[60] |
Wang XX, Yang YL, Duan Q, et al. sSgo1, a major splice variant of Sgo1, functions in centriole cohesion where it is regulated by Plk1[J]. Dev Cell, 2008, 14(3):331-341.
doi: 10.1016/j.devcel.2007.12.007 URL |
[61] |
Nigg EA. Origins and consequences of centrosome aberrations in human cancers[J]. Int J Cancer, 2006, 119(12):2717-2723.
doi: 10.1002/(ISSN)1097-0215 URL |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[4] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[5] | 徐发迪, 徐康, 孙东明, 李萌蕾, 赵建志, 鲍晓明. 基于杨木(Populus sp.)的二代燃料乙醇技术研究进展[J]. 生物技术通报, 2023, 39(9): 27-39. |
[6] | 赵思佳, 王晓璐, 孙纪录, 田健, 张杰. 代谢工程改造毕赤酵母生产赤藓糖醇[J]. 生物技术通报, 2023, 39(8): 137-147. |
[7] | 徐靖, 朱红林, 林延慧, 唐力琼, 唐清杰, 王效宁. 甘薯IbHQT1启动子的克隆及上游调控因子的鉴定[J]. 生物技术通报, 2023, 39(8): 213-219. |
[8] | 宋志忠, 徐维华, 肖慧琳, 唐美玲, 陈景辉, 管雪强, 刘万好. 酿酒葡萄铁调节转运蛋白基因VvIRT1的克隆、表达与功能[J]. 生物技术通报, 2023, 39(8): 234-240. |
[9] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[10] | 李雨真, 梅天秀, 李治文, 王淇, 李俊, 邹岳, 赵心清. 红酵母基因组和代谢工程改造研究进展[J]. 生物技术通报, 2023, 39(7): 67-79. |
[11] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[12] | 董聪, 高庆华, 王玥, 罗同阳, 王庆庆. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324. |
[13] | 侯筱媛, 车郑郑, 李姮静, 杜崇玉, 胥倩, 王群青. 大豆膜系统cDNA文库的构建及大豆疫霉效应子PsAvr3a互作蛋白的筛选[J]. 生物技术通报, 2023, 39(4): 268-276. |
[14] | 祝瑛萱, 李克景, 何敏, 郑道琼. 酵母模型揭示胁迫因子驱动基因组变异的研究进展[J]. 生物技术通报, 2023, 39(11): 191-204. |
[15] | 孙言秋, 谢采芸, 汤岳琴. 耐高温酿酒酵母的构建与高温耐受机制解析[J]. 生物技术通报, 2023, 39(11): 226-237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||