生物技术通报 ›› 2022, Vol. 38 ›› Issue (3): 22-30.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0797
收稿日期:
2021-06-23
出版日期:
2022-03-26
发布日期:
2022-04-06
作者简介:
康芮,女,硕士研究生,研究方向:茶树遗传育种与抗逆机理;E-mail: 基金资助:
KANG Rui(), LIU Chun-hui, CHEN Si-wen, ZHAO Ren-liang, ZHOU Qiong-qiong()
Received:
2021-06-23
Published:
2022-03-26
Online:
2022-04-06
摘要:
类钙调素(calmodulin-like protein,CML)是植物体内一类钙受体蛋白,介导Ca2+与下游靶蛋白的相互作用,在植物抗逆反应中发挥重要作用。探究茶树中CML蛋白在逆境胁迫中的功能,为进一步研究茶树CsCML24对逆境胁迫的响应机理提供理论依据。以龙井43一年生茶树扦插苗为材料,克隆得到类钙调蛋白基因CsCML24(GenBank登录号为MZ325391),并进行了生物信息学分析。同时,利用实时荧光定量PCR技术分析茶树CsCML24组织表达特异性以及不同非生物胁迫处理下的表达模式。结果显示,CsCML24的CDS长为480 bp,编码159个氨基酸。CsCML24为无信号肽及跨膜结构的稳定性亲水蛋白,含有EF-hand保守结构域,能与Ca2+结合。qRT-PCR表明,CsCML24在茶树各组织中均表达,在成熟叶的表达量显著高于其他组织,茎中表达量较低;该基因在低温(10℃)、干旱(20% PEG 6000)、高盐胁迫(200 mmol/L NaCl)和ABA(100 μmol/L)处理均能诱导表达,且在不同胁迫下表达差异显著,推测该基因可能通过ABA信号途径调节对低温和干旱的耐受性。
康芮, 刘春晖, 陈思文, 赵仁亮, 周琼琼. 茶树CsCML24的克隆及表达分析[J]. 生物技术通报, 2022, 38(3): 22-30.
KANG Rui, LIU Chun-hui, CHEN Si-wen, ZHAO Ren-liang, ZHOU Qiong-qiong. Cloning and Expression Analysis of CsCML24 Gene in Camellia sinensis[J]. Biotechnology Bulletin, 2022, 38(3): 22-30.
引物名称 Primer name | 序列 Sequence(5'-3') | 用途 Function |
---|---|---|
CsCML24-F | CATACAACAACAATGTGTCCTACC | 基因克隆 Gene cloning |
CsCML24-R | AAAGGCACCGAACAATACTA | |
CsCML24qRT-F | AGGAGGCGTTTCGGTTTATG | 实时荧光定量 Quantitative real-time PCR |
CsCML24qRT-R | CCTCATCAGTAGCATCAAAACCAG | |
CsPTBqRT-F | ACCAAGCACACTCCACACTATCG | 茶树内参基因 Reference gene |
CsPTBqRT-R | TGCCCCCTTATCATCATCCACAA |
表1 引物序列
Table 1 Primer sequences
引物名称 Primer name | 序列 Sequence(5'-3') | 用途 Function |
---|---|---|
CsCML24-F | CATACAACAACAATGTGTCCTACC | 基因克隆 Gene cloning |
CsCML24-R | AAAGGCACCGAACAATACTA | |
CsCML24qRT-F | AGGAGGCGTTTCGGTTTATG | 实时荧光定量 Quantitative real-time PCR |
CsCML24qRT-R | CCTCATCAGTAGCATCAAAACCAG | |
CsPTBqRT-F | ACCAAGCACACTCCACACTATCG | 茶树内参基因 Reference gene |
CsPTBqRT-R | TGCCCCCTTATCATCATCCACAA |
图1 CsCML24的克隆 A:CsCML24扩增产物电泳图;B:CsCML24核苷酸序列与推测的氨基酸序列
Fig. 1 Cloning of CsCML24 gene A:Electrophoresis of PCR product for CsCML24. B:Nucleotide sequence and deduced amino acid sequence of the CsCML24
蛋白 Protein | 分子量 Molecular weight/Da | 分子式 Formula | 原子总数 No. of atoms | 等电点 pI | 脂肪系数 Aliphatic index | 不稳定系数 Instability index | 总亲水性 Total hydrophilicity |
---|---|---|---|---|---|---|---|
CsCML24 | 38 248.08 | C1386H2294N480O593S96 | 4 849 | 5.23 | 22.08 | 38.05 | -0.596 |
表2 CsCML24蛋白的基本理化性质
Table 2 Basic physicochemical properties of CsCML24 protein
蛋白 Protein | 分子量 Molecular weight/Da | 分子式 Formula | 原子总数 No. of atoms | 等电点 pI | 脂肪系数 Aliphatic index | 不稳定系数 Instability index | 总亲水性 Total hydrophilicity |
---|---|---|---|---|---|---|---|
CsCML24 | 38 248.08 | C1386H2294N480O593S96 | 4 849 | 5.23 | 22.08 | 38.05 | -0.596 |
图3 茶树CsCML24二级结构预测 蓝色:α-螺旋;红色:β-折叠;绿色:β-转角;粉色:不规则卷曲
Fig. 3 Secondary structure prediction of CsCML24 in C. sinensis Blue:Alpha helix. Red:Extended strand. Green:β-turn. Pink:Random coil
图9 CsCML24在茶树不同组织部位中的表达模式 不同字母表示在0.01水平上有显著差异。下同
Fig. 9 Expression patterns of CsCML24 in various tissues of C. sinensis plant Different letters indicate significant differences at the 0.01 level. The same below
[1] |
Li Y, Wang X, Ban Q, et al. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis[J]. BMC Genomics, 2019, 20(1):624.
doi: 10.1186/s12864-019-5988-3 URL |
[2] |
Ding CQ, Lei L, Yao LN, et al. The involvements of calcium-dependent protein kinases and catechins in tea plant[Camellia sinensis(L.)O. Kuntze]cold responses[J]. Plant Physiol Biochem, 2019, 143:190-202.
doi: 10.1016/j.plaphy.2019.09.005 URL |
[3] |
Reddy AS, Ali GS, Celesnik H, et al. Coping with stresses:roles of calcium- and calcium/calmodulin-regulated gene expression[J]. Plant Cell, 2011, 23(6):2010-2032.
doi: 10.1105/tpc.111.084988 URL |
[4] |
Townley HE, Knight MR. Calmodulin as a potential negative regulator of ArabidopsisCOR gene expression[J]. Plant Physiol, 2002, 128(4):1169-1172.
pmid: 11950965 |
[5] |
Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants[J]. Science, 1996, 274(5294):1900-1902.
pmid: 8943201 |
[6] |
Snedden WA, Fromm H. Calmodulin, calmodulin-related proteins and plant responses to the environment[J]. Trends Plant Sci, 1998, 3(8):299-304.
doi: 10.1016/S1360-1385(98)01284-9 URL |
[7] |
Batistic O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases[J]. Biochim Biophys Acta, 2009, 1793(6):985-992.
doi: 10.1016/j.bbamcr.2008.10.006 pmid: 19022300 |
[8] |
Midhat U, Ting MKY, Teresinski HJ, et al. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis[J]. Plant Mol Biol, 2018, 96(4/5):375-392.
doi: 10.1007/s11103-018-0703-3 URL |
[9] | Cheval C, Aldon D, Galaud JP, et al. Calcium/calmodulin-mediated regulation of plant immunity[J]. Biochim Biophys Acta, 2013, 1833(7):1766-1771. |
[10] | Zeng H, Xu L, Singh A, et al. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses[J]. Front Plant Sci, 2015, 6:600. |
[11] |
McCormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis[J]. New Phytol, 2003, 159(3):585-598.
doi: 10.1046/j.1469-8137.2003.00845.x URL |
[12] |
Boonburapong B, Buaboocha T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins[J]. BMC Plant Biol, 2007, 7:4.
pmid: 17263873 |
[13] |
Munir S, Khan MR, Song J, et al. Genome-wide identification, characterization and expression analysis of calmodulin-like(CML)proteins in tomato(Solanum lycopersicum)[J]. Plant Physiol Biochem, 2016, 102:167-179.
doi: 10.1016/j.plaphy.2016.02.020 URL |
[14] |
Sun QG, Yu SH, Guo ZF. Calmodulin-like(CML)gene family in Medicago truncatula:genome-wide identification, characterization and expression analysis[J]. Int J Mol Sci, 2020, 21(19):7142.
doi: 10.3390/ijms21197142 URL |
[15] | Delk NA, Johnson KA, Chowdhury NI, et al. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress[J]. Plant Physiol, 2005, 139(1):240-253. |
[16] |
Park HC, Park CY, Koo SC, et al. AtCML8, a calmodulin-like protein, differentially activating CaM-dependent enzymes in Arabidopsis thaliana[J]. Plant Cell Rep, 2010, 29(11):1297-1304.
doi: 10.1007/s00299-010-0916-7 URL |
[17] |
Scholz SS, Vadassery J, Heyer M, et al. Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory[J]. Mol Plant, 2014, 7(12):1712-1726.
doi: 10.1093/mp/ssu102 URL |
[18] | Vadassery J, Reichelt M, Hause B, et al. CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis[J]. Plant Physiol, 2012, 159(3):1159-1175. |
[19] |
Xu GY, Rocha PS, Wang ML, et al. A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis[J]. Planta, 2011, 234(1):47-59.
doi: 10.1007/s00425-011-1386-z URL |
[20] |
Yin XM, Huang LF, Zhang X, et al. OsCML4 improves drought tolerance through scavenging of reactive oxygen species in rice[J]. J Plant Biol, 2015, 58(1):68-73.
doi: 10.1007/s12374-014-0349-x URL |
[21] |
Yin XM, Huang LF, Wang ML, et al. OsDSR-1, a calmodulin-like gene, improves drought tolerance through scavenging of reactive oxygen species in rice(Oryza sativa L.)[J]. Mol Breed, 2017, 37(6):1-13.
doi: 10.1007/s11032-016-0586-4 URL |
[22] |
Yang J, Liu S, Ji LX, et al. Identification of novel OsCML16 target proteins and differential expression analysis under abiotic stresses in rice[J]. J Plant Physiol, 2020, 249:153165.
doi: 10.1016/j.jplph.2020.153165 URL |
[23] |
Munir S, Liu H, Xing Y, et al. Overexpression of calmodulin-like(ShCML44)stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses[J]. Sci Rep, 2016, 6:31772.
doi: 10.1038/srep31772 URL |
[24] | 刘伟, 滕腾, 赵懿琛, 等. 杜仲类钙调蛋白基因EuCML5的克隆及表达分析[J]. 园艺学报, 2020, 47(3):590-600. |
Liu W, Teng T, Zhao YC, et al. Cloning and expression analysis of EuCML5 gene in Eucommia ulmoides[J]. Acta Hortic Sin, 2020, 47(3):590-600. | |
[25] |
Li C, Meng D, Zhang J, et al. Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in apple(Malus×domestica)[J]. Plant Physiol Biochem, 2019, 139:600-612.
doi: 10.1016/j.plaphy.2019.04.014 URL |
[26] |
Aleynova OA, Kiselev KV, Ogneva ZV, et al. The grapevine calmodulin-like protein gene CML21 is regulated by alternative splicing and involved in abiotic stress response[J]. Int J Mol Sci, 2020, 21(21):7939.
doi: 10.3390/ijms21217939 URL |
[27] | 杜昱林. 茶树花粉CsE1α、CsCML21基因的亚细胞定位及启动子克隆与功能验证[D]. 南京:南京农业大学, 2015. |
Du YL. Subcellular localization of CsE1α and CsCML21 and cloning and expression of the promoters from the pollen of Camellia sinensis[D]. Nanjing:Nanjing Agricultural University, 2015. | |
[28] |
Ma Q, Zhou Q, Chen C, et al. Isolation and expression analysis of CsCML genes in response to abiotic stresses in the tea plant(Camellia sinensis)[J]. Sci Rep, 2019, 9(1):8211.
doi: 10.1038/s41598-019-44681-7 URL |
[29] | 张满仓, 张超, 赵朋, 等. 马铃薯StCML基因家族鉴定及表达分析[J]. 西北植物学报, 2021, 41(4):565-575. |
Zhang MC, Zhang C, Zhao P, et al. Genome-wide identification and expression analysis of StCML gene family in Solanum tuberosum L[J]. Acta Bot Boreali Occidentalia Sin, 2021, 41(4):565-575. | |
[30] | 李迎迎, 闫子飞, 马波, 等. ‘西伯利亚’百合类钙调蛋白基因LiCML的克隆与表达特征分析[J]. 分子植物育种, 2020, 18(22):7334-7341. |
Li YY, Yan ZF, Ma B, et al. Cloning and expression analysis of calmodulin gene LiCML from Lilium[J]. Mol Plant Breed, 2020, 18(22):7334-7341. | |
[31] |
Yang X, Wang SS, Wang M, et al. Arabidopsis thaliana calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca2+ concentration[J]. Plant Mol Biol, 2014, 86(3):225-236.
doi: 10.1007/s11103-014-0220-y pmid: 25139229 |
[32] | 申清湄. 黄花苜蓿MfCML24基因的功能研究[D]. 广州:华南农业大学, 2017. |
Shen QM. Functional analysis of MfCML24 from Medicago falcata[D]. Guangzhou:South China Agricultural University, 2017. | |
[33] |
Zhang H, Zhao Y, Zhu JK. Thriving under stress:how plants balance growth and the stress response[J]. Dev Cell, 2020, 55(5):529-543.
doi: 10.1016/j.devcel.2020.10.012 pmid: 33290694 |
[34] |
Lamers J, van der Meer T, Testerink C. How plants sense and respond to stressful environments[J]. Plant Physiol, 2020, 182(4):1624-1635.
doi: 10.1104/pp.19.01464 URL |
[35] |
Saijo Y, Loo EP. Plant immunity in signal integration between biotic and abiotic stress responses[J]. New Phytol, 2020, 225(1):87-104.
doi: 10.1111/nph.v225.1 URL |
[1] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[2] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[3] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[4] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[5] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[6] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[7] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[8] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[9] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[10] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[11] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[12] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[13] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[14] | 庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应[J]. 生物技术通报, 2023, 39(2): 107-115. |
[15] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||