生物技术通报 ›› 2022, Vol. 38 ›› Issue (8): 244-251.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1303
周雪敏(), 康丽鹃, 郭永妮, 杨笑含, 蒋易龙, 王泽龙, 孙倩, 康波()
收稿日期:
2021-10-14
出版日期:
2022-08-26
发布日期:
2022-09-14
作者简介:
周雪敏,女,硕士研究生,研究方向:动物生殖生理;E-mail: 基金资助:
ZHOU Xue-min(), KANG Li-juan, GUO Yong-ni, YANG Xiao-han, JIANG Yi-long, WANG Ze-long, SUN Qian, KANG bo()
Received:
2021-10-14
Published:
2022-08-26
Online:
2022-09-14
摘要:
为研究并阐明鸭肌肉组织多胺代谢和肌肉发育相关基因表达的变化规律,利用高效液相色谱和实时荧光定量检测了0-120日龄鸭胸肌和腿肌组织中多胺含量、多胺代谢和肌肉发育相关基因表达量,并分析了多胺代谢和肌肉发育相关基因表达量的相关性。结果表明,0日龄鸭胸肌和腿肌组织中腐胺、亚精胺和精胺含量最高,胸肌和腿肌组织中多胺合成代谢相关基因分别呈一定规律变化;胸肌组织中,MyoD1和Myf5基因在0日龄时表达量最高,MyoG和IGF-1基因表达量在30日龄时最高,MSTN在90日龄时表达最高,且MyoD1和Myf5基因与SPMS、SPDS、SSAT、SMO基因呈显著的正相关;腿肌中,ODC与MyoD1和MSTN基因表达量呈显著的正相关。上述研究结果提示,鸭肌肉组织中多胺含量、多胺代谢和肌肉发育相关基因表达量的变化规律具有一定相似性,可为多胺调控鸭肌肉发育作用机制的研究提供参考。
周雪敏, 康丽鹃, 郭永妮, 杨笑含, 蒋易龙, 王泽龙, 孙倩, 康波. 不同日龄鸭肌肉组织多胺代谢和肌肉发育相关基因表达的规律[J]. 生物技术通报, 2022, 38(8): 244-251.
ZHOU Xue-min, KANG Li-juan, GUO Yong-ni, YANG Xiao-han, JIANG Yi-long, WANG Ze-long, SUN Qian, KANG bo. Expressions of Genes Related to Polyamine Metabolism and Muscle Development in Muscle Tissues of Duck at Different Ages[J]. Biotechnology Bulletin, 2022, 38(8): 244-251.
引物 Primer | 序列 Sequence(5'-3') | 产物大小 Amplicon size/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|
MyoD1 | F:GCAACGCCATCCGCTACAT R:GCAATCAAGGCTGGAAACAACA | 85 | 64.5 |
Myf5 | F:AGGAGGAGGCTGAAGAAAGTGA R:GCTCTGTCTCGGCAGGTGATA | 180 | 60 |
MyoG | F:CGGATCACCTCCTGCCTGA R:CGTCCTCTACGGCGATGCT | 87 | 63 |
IGF-1 | F:GTGAAGATGCATACTGTGTC R:TGAAGTAAAAGCCTCTGT | 249 | 60 |
MSTN | F:GCACTGGTATTTGGCAGAGTATT R:TCACCTGGTCCTGGGAAAGT | 143 | 55 |
ODC | F:TTGACTGCCACATCCTTG R:GCTCTGCTATCGTTACACT | 199 | 58 |
SPDS | F:ACCAGCTCATGAAGACAGCACTCA R:TGCTACACAGCATGAAGCCGATCT | 189 | 60 |
SPMS | F:TTCGGGTGACTCAGTTCCTGCTAA R:AACGGAGACCCTCCTTCAGCAAAT | 199 | 60 |
APAO | F:AGTCTTCACATGTGCTCTGTGGGT R:TGGCAATTGTGGGTTTCCTGTCAC | 131 | 59 |
SSAT | F:TGCCGGTGTAGACAATGACAACCT R:TAAAGCTTTGGAATGGGTGCTCGC | 114 | 59 |
SMO | F:CTACCCACGGTGCTGTGCTTT R:TTGAGCCCACCTGTGTGTAGGAAT | 129 | 59 |
GAPDH | F:GTGGTGCAAGAGGCATTGCTGAC R:GCTGATGCTCCCATGTTCGTGAT | 86 | 65 |
表1 实验所用引物序列
Table 1 Primer sequences used in the study
引物 Primer | 序列 Sequence(5'-3') | 产物大小 Amplicon size/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|
MyoD1 | F:GCAACGCCATCCGCTACAT R:GCAATCAAGGCTGGAAACAACA | 85 | 64.5 |
Myf5 | F:AGGAGGAGGCTGAAGAAAGTGA R:GCTCTGTCTCGGCAGGTGATA | 180 | 60 |
MyoG | F:CGGATCACCTCCTGCCTGA R:CGTCCTCTACGGCGATGCT | 87 | 63 |
IGF-1 | F:GTGAAGATGCATACTGTGTC R:TGAAGTAAAAGCCTCTGT | 249 | 60 |
MSTN | F:GCACTGGTATTTGGCAGAGTATT R:TCACCTGGTCCTGGGAAAGT | 143 | 55 |
ODC | F:TTGACTGCCACATCCTTG R:GCTCTGCTATCGTTACACT | 199 | 58 |
SPDS | F:ACCAGCTCATGAAGACAGCACTCA R:TGCTACACAGCATGAAGCCGATCT | 189 | 60 |
SPMS | F:TTCGGGTGACTCAGTTCCTGCTAA R:AACGGAGACCCTCCTTCAGCAAAT | 199 | 60 |
APAO | F:AGTCTTCACATGTGCTCTGTGGGT R:TGGCAATTGTGGGTTTCCTGTCAC | 131 | 59 |
SSAT | F:TGCCGGTGTAGACAATGACAACCT R:TAAAGCTTTGGAATGGGTGCTCGC | 114 | 59 |
SMO | F:CTACCCACGGTGCTGTGCTTT R:TTGAGCCCACCTGTGTGTAGGAAT | 129 | 59 |
GAPDH | F:GTGGTGCAAGAGGCATTGCTGAC R:GCTGATGCTCCCATGTTCGTGAT | 86 | 65 |
图1 不同日龄鸭胸肌组织多胺含量的变化规律 图中不同小写字母表示在 P<0.05 水平上差异显著,下同
Fig. 1 Changes of polyamine contents of different aged duck pectoralis Different lowercase letters in the figure indicate significant differences at the P<0.05 level,the same below
基因 Gene | 相关系数 Correlation coefficient | P值 P value | |
---|---|---|---|
MyoD1 | SPMS | 0.733 24 | 6.827 11×10-4 |
MyoD1 | SPDS | 0.846 36 | 3.594 06×10-7 |
MyoD1 | SSAT | 0.810 69 | 5.133 09×10-7 |
MyoD1 | SMO | 0.820 04 | 1.720 74×10-5 |
Myf5 | SPMS | 0.946 4 | 7.152 42×10-10 |
Myf5 | SPDS | 0.827 96 | 3.259×10-7 |
Myf5 | SSAT | 0.945 63 | 0.001 08 |
Myf5 | SMO | 0.916 11 | 3.682 54×10-8 |
表2 胸肌中肌肉发育相关基因与多胺代谢基因表达量的相关系数
Table 2 Correlation coefficient between expressions of polyamine metabolism and muscle development genes in breast muscle
基因 Gene | 相关系数 Correlation coefficient | P值 P value | |
---|---|---|---|
MyoD1 | SPMS | 0.733 24 | 6.827 11×10-4 |
MyoD1 | SPDS | 0.846 36 | 3.594 06×10-7 |
MyoD1 | SSAT | 0.810 69 | 5.133 09×10-7 |
MyoD1 | SMO | 0.820 04 | 1.720 74×10-5 |
Myf5 | SPMS | 0.946 4 | 7.152 42×10-10 |
Myf5 | SPDS | 0.827 96 | 3.259×10-7 |
Myf5 | SSAT | 0.945 63 | 0.001 08 |
Myf5 | SMO | 0.916 11 | 3.682 54×10-8 |
基因 Gene | 相关系数 Correlation coefficient | P值 P value | |
---|---|---|---|
MyoD1 | ODC | 0.746 32 | 0.005 53 |
MSTN | ODC | 0.919 39 | 4.878 05×10-12 |
表3 腿肌中肌肉发育相关基因与多胺代谢基因表达量的相关系数
Table 3 Correlation coefficient between expressions of polyamine metabolism and muscle development genes in leg muscle
基因 Gene | 相关系数 Correlation coefficient | P值 P value | |
---|---|---|---|
MyoD1 | ODC | 0.746 32 | 0.005 53 |
MSTN | ODC | 0.919 39 | 4.878 05×10-12 |
[1] |
Igarashi K, Kashiwagi K. The functional role of polyamines in eukaryotic cells[J]. Int J Biochem Cell Biol, 2019, 107:104-115.
doi: S1357-2725(18)30272-3 pmid: 30578954 |
[2] |
Saiki S, Sasazawa Y, Fujimaki M, et al. A metabolic profile of polyamines in parkinson disease:a promising biomarker[J]. Ann Neurol, 2019, 86(2):251-263.
doi: 10.1002/ana.25516 URL |
[3] | 胡梦婷, 崔毓桂. 多胺的生殖生物学作用及其研究进展[J]. 国际生殖健康/计划生育杂志, 2018, 37(5):397-400. |
Hu MT, Cui YG. Effects of polyamine on reproduction:aspects of reproductive biology[J]. J Int Reproductive Heal Plan, 2018, 37(5):397-400. | |
[4] |
Madeo F, Bauer MA, Carmona-Gutierrez D, et al. Spermidine:a physiological autophagy inducer acting as an anti-aging vitamin in humans?[J]. Autophagy, 2019, 15(1):165-168.
doi: 10.1080/15548627.2018.1530929 URL |
[5] | 向睿, 何珲, 康波, 等. 多胺调控动物繁殖的作用及其机制[J]. 动物营养学报, 2014, 26(11):3251-3255. |
Xiang R, He H, Kang B, et al. Effects of polyamine regulation on animal reproduction and its mechanism[J]. Chin J Animal Nutr, 2014, 26(11):3251-3255. | |
[6] |
De Santa F, Vitiello L, et al. The role of metabolic remodeling in macrophage polarization and its effect on skeletal muscle regeneration[J]. Antioxid Redox Signal, 2019, 30(12):1553-1598.
doi: 10.1089/ars.2017.7420 URL |
[7] | Yamazawa T, Yamada S. Role of skeletal muscle homeostasis of functional food material[J]. Nihon Yakurigaku Zasshi Folia Pharmacol Japonica, 2020, 155(4):236-240. |
[8] |
Van den Bossche J, Lamers WH, Koehler ES, et al. Pivotal Advance:Arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes[J]. J Leukoc Biol, 2012, 91(5):685-699.
doi: 10.1189/jlb.0911453 URL |
[9] |
Fan J, Yang X, Li J, et al. Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway[J]. Oncotarget, 2017, 8(11):17475-17490.
doi: 10.18632/oncotarget.15728 URL |
[10] | 王月超, 蔡辉益, 闫海洁, 等. 家禽骨骼肌的生长发育规律及调控[J]. 饲料工业, 2014, 35(17):87-92. |
Wang YC, Cai HY, Yan HJ, et al. Research on skeletal muscle growth and development rules in poultry and its manipulation[J]. Feed Ind, 2014, 35(17):87-92. | |
[11] |
Brinegar AE, Xia Z, et al. Extensive alternative splicing transitions during postnatal skeletal muscle development are required for calcium handling functions[J]. Elife, 2017, 6:e27192.
doi: 10.7554/eLife.27192 URL |
[12] |
Adhikari A, Kim W, Davie J. Myogenin is required for assembly of the transcription machinery on muscle genes during skeletal muscle differentiation[J]. PLoS One, 2021, 16(1):e0245618.
doi: 10.1371/journal.pone.0245618 URL |
[13] | 刘宁, 邓雪娟, 王建平, 等. 生肌调节因子及肌生成调控因素研究进展[J]. 中国畜牧兽医, 2015, 42(10):2644-2649. |
Liu N, Deng XJ, Wang JP, et al. Research progress on regulation factors of myogenic regulatory factors and myogenesis[J]. China Animal Husb Vet Med, 2015, 42(10):2644-2649. | |
[14] |
Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy[J]. Cells, 2020, 9(9):1970.
doi: 10.3390/cells9091970 URL |
[15] | 刘宏祥, 薛敏开, 等. 高邮鸭MSTN 5'端非编码区SNP突变与生长性状的关联分析[J]. 中国家禽, 2017, 39(17):10-13. |
Liu HX, Xue MK, et al. A SNP locus in 5' non-coding part of MSTN gene of Gaoyou duck closely relating to growth traits[J]. China Poult, 2017, 39(17):10-13. | |
[16] |
Ploskonos MV, Syatkin SP, Neborak EV, et al. Polyamine analogues of propanediamine series inhibit prostate tumor cell growth and activate the polyamine catabolic pathway[J]. Anticancer Res, 2020, 40(3):1437-1441.
doi: 10.21873/anticanres.14085 pmid: 32132040 |
[17] |
Reichhardt CC, Ahmadpour A, Christensen RG, et al. Understanding the influence of trenbolone acetate and polyamines on proliferation of bovine satellite cells[J]. Domest Anim Endocrinol, 2021, 74:106479.
doi: 10.1016/j.domaniend.2020.106479 URL |
[18] |
Reichhardt CC, Okamoto LL, Motsinger LA, et al. The impact of polyamine precursors, polyamines, and steroid hormones on temporal messenger RNA abundance in bovine satellite cells induced to differentiate[J]. Animals, 2021, 11(3):764.
doi: 10.3390/ani11030764 URL |
[19] | Cervelli M, Leonetti A, Duranti G, et al. Skeletal muscle pathophysiology:the emerging role of spermine oxidase and spermidine[J]. Med Sci(Basel), 2018, 6(1):E14. |
[20] |
Zhang L, et al. Spermidine-activated satellite cells are associated with hypoacetylation in ACVR2B and Smad3 binding to myogenic genes in mice[J]. J Agric Food Chem, 2018, 66(2):540-550.
doi: 10.1021/acs.jafc.7b04482 URL |
[21] | 刘宏祥, 宋卫涛, 胡艳, 等. 通过生长模型对不同品种鸭体重与胸肌、腿肌生长发育规律进行比较[J]. 畜牧兽医学报, 2016, 47(6):1112-1123. |
Liu HX, Song WT, Hu Y, et al. The comparison of growth patterns of body weight, breast muscle and leg muscle between different duck breeds via growth models[J]. Chin J Animal Vet Sci, 2016, 47(6):1112-1123. | |
[22] | 张海波. 鸭早期生长发育规律及A-FABP基因多态性与脂肪性状关联分析[D]. 扬州: 扬州大学, 2009. |
Zhang HB. The analysis of the early growth-development patterns and the correlation between genetic polymorphism of A-FABP gene with fat traits in ducks[D]. Yangzhou: Yangzhou University, 2009. | |
[23] | 王丽霞, 陈星, 杨宇, 等. 乌嘴白羽优质肉鸭体重与胸腿肌生长发育规律及其生长曲线模型拟合分析[J]. 中国畜牧杂志, 2020, 56(2):71-76. |
Wang LX, Chen X, Yang Y, et al. Fitness and growth curve model fitting analysis of quality meat duck weight and thoracic muscle in upper white feather meat duck and its growth curve model[J]. Chin J Animal Sci, 2020, 56(2):71-76. | |
[24] |
Lefèvre PL, Palin MF, Murphy BD. Polyamines on the reproductive landscape[J]. Endocr Rev, 2011, 32(5):694-712.
doi: 10.1210/er.2011-0012 pmid: 21791568 |
[25] |
Kusano T, Berberich T, et al. Polyamines:essential factors for growth and survival[J]. Planta, 2008, 228(3):367-381.
doi: 10.1007/s00425-008-0772-7 pmid: 18594857 |
[26] | 魏园丁. 鸭MyoD1和Myf5基因CDS区克隆及其在肌肉组织中发育差异性表达研究[D]. 雅安: 四川农业大学, 2009. |
Wei YD. Cloning of duck MyoD1 and Myf5 genes CDS sequences and research about their differential developmental expression in duck muscle tissues[D]. Yaan: Sichuan Agricultural University, 2009. | |
[27] |
Schiaffino S, Dyar KA, et al. Mechanisms regulating skeletal muscle growth and atrophy[J]. FEBS J, 2013(17):4294-4314.
doi: 10.1111/febs.12253 pmid: 23517348 |
[28] | 陶志云, 朱春红, 姬改革, 等. 鸭胚骨骼肌成肌细胞中MyoD1和Myf5基因的表达与分析[J]. 福建农林大学学报:自然科学版, 2014, 43(3):299-303. |
Tao ZY, Zhu CH, Ji GG, et al. Expression and analysis of MyoD1 and Myf5 gene in duck embryo myoblast[J]. J Fujian Agric For Univ:Nat Sci Ed, 2014, 43(3):299-303. | |
[29] |
Yin HD, Li DY, Wang Y, et al. Myogenic regulatory factor(MRF)expression is affected by exercise in postnatal chicken skeletal muscles[J]. Gene, 2015, 561(2):292-299.
doi: 10.1016/j.gene.2015.02.044 URL |
[30] | 寇洁, 李亮, 王继文. 5个鸭品种MyoD基因外显子1的多态性及其与屠宰性状的关联分析[J]. 中国畜牧杂志, 2011, 47(19):10-12. |
Kou J, Li L, Wang JW. Polymorphism of Myod gene excognito 1 and its correlation analysis and slaughter traits in five duck variety[J]. Chin J Animal Sci, 2011, 47(19):10-12. | |
[31] | 李丰耘, 张茹, 王坤, 等. 盐津乌骨鸡MyoG和IGF-1基因表达及其与生长、屠宰性状的相关性分析[J]. 中国畜牧兽医, 2020, 47(8):2502-2509. |
Li FY, Zhang R, Wang K, et al. Expression of MyoG and IGF-1 genes and its correlation analysis with growth and slaughter traits of Yanjin black-bone chickens[J]. China Animal Husb Vet Med, 2020, 47(8):2502-2509. | |
[32] | 方幸. 运动介导肌肉因子IGF-1、FGF-2对小鼠骨的影响[D]. 上海: 华东师范大学, 2018. |
Fang X. The effect of exercise-mediated myokine IGF-1, FGF-2 on bone in mice[D]. Shanghai: East China Normal University, 2018. | |
[33] |
Zanou N, Gailly P. Skeletal muscle hypertrophy and regeneration:interplay between the myogenic regulatory factors(MRFs)and insulin-like growth factors(IGFs)pathways[J]. Cell Mol Life Sci, 2013, 70(21):4117-4130.
doi: 10.1007/s00018-013-1330-4 URL |
[1] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[2] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[3] | 程亚楠, 张文聪, 周圆, 孙雪, 李玉, 李庆刚. 乳酸乳球菌生产2'-岩藻糖基乳糖的途径构建及发酵培养基优化[J]. 生物技术通报, 2023, 39(9): 84-96. |
[4] | 沙珊珊, 董世荣, 杨玉菊. 肠道菌群及代谢物调控宿主肠道免疫的研究进展[J]. 生物技术通报, 2023, 39(8): 126-136. |
[5] | 赵思佳, 王晓璐, 孙纪录, 田健, 张杰. 代谢工程改造毕赤酵母生产赤藓糖醇[J]. 生物技术通报, 2023, 39(8): 137-147. |
[6] | 谢田朋, 张佳宁, 董永骏, 张建, 景明. 早期抽薹对当归根际土壤微环境的影响[J]. 生物技术通报, 2023, 39(7): 206-218. |
[7] | 李雨真, 梅天秀, 李治文, 王淇, 李俊, 邹岳, 赵心清. 红酵母基因组和代谢工程改造研究进展[J]. 生物技术通报, 2023, 39(7): 67-79. |
[8] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[9] | 韩华蕊, 杨宇琭, 门艺涵, 韩尚玲, 韩渊怀, 霍轶琼, 侯思宇. 基于代谢组学研究谷子SiYABBYs参与花发育过程中鼠李糖苷的生物合成[J]. 生物技术通报, 2023, 39(6): 189-198. |
[10] | 潘虎, 周子琼, 田云. 三株异菌脲高效降解菌株的筛选、鉴定及其降解特性分析[J]. 生物技术通报, 2023, 39(6): 298-307. |
[11] | 郑焕, 林冬梅, 刘峻源, 张引莲, 林标声, 林占熺, 李晶. 基于LC-QTOF-MS代谢组学解析牛樟芝子实体和菌丝体中氨基酸代谢差异[J]. 生物技术通报, 2023, 39(5): 254-266. |
[12] | 郁慧丽, 李爱涛. 细胞色素P450酶在香精香料绿色生物合成中的应用[J]. 生物技术通报, 2023, 39(4): 24-37. |
[13] | 姚近东, 汤华妹, 杨文霄, 张丽珊, 林向民. 恩诺沙星胁迫下嗜水气单胞菌的比较蛋白质组学研究[J]. 生物技术通报, 2023, 39(4): 288-296. |
[14] | 赵艳侠, 张晶莹, 孙骏飞, 王绛辉, 孙家波, 吕晓惠. ‘重瓣红’玫瑰不同花发育阶段转录和代谢差异分析[J]. 生物技术通报, 2023, 39(3): 184-195. |
[15] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||