生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 297-307.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0324
毛可欣1,2(), 王海荣1, 安淼1, 刘腾飞1, 王世金3, 李健1(), 李国田1()
收稿日期:
2023-04-07
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
李健,男,博士,助理研究员,研究方向:猕猴桃抗逆研究;E-mail: lijian097597@163.com;作者简介:
毛可欣,女,博士研究生,研究方向:生物信息学分析;E-mail: mao_kx@foxmail.com
基金资助:
MAO Ke-xin1,2(), WANG Hai-rong1, AN Miao1, LIU Teng-fei1, WANG Shi-jin3, LI Jian1(), LI Guo-tian1()
Received:
2023-04-07
Published:
2023-11-26
Online:
2023-12-20
摘要:
GRAS基因家族广泛参与植物生长和逆境响应,而低温是制约猕猴桃生产和分布的重要因素之一,鉴定猕猴桃GRAS基因家族,分析其在低温胁迫中的表达情况,为猕猴桃的抗寒研究和品种选育提供理论依据。以中华猕猴桃‘红阳’基因组为参考进行GRAS家族保守结构域比对,通过对鉴定到的家族成员进行系统进化树、蛋白理化性质、基因结构、蛋白三级结构、蛋白质motif、顺式作用元件、共线性、密码子偏好性和基因表达模式等进行分析。结果表明,猕猴桃基因组共存在79个GRAS家族成员,分属于8个亚家族,且各亚家族基因、蛋白结构有所差异。顺式作用原件分析显示该家族基因参与多种植物激素、生长发育以及胁迫响应。密码子偏好性分析发现,该家族密码子第3位碱基更偏好使用嘧啶类碱基(G/T)。鉴定到6个基因可能参与猕猴桃低温胁迫过程,并进行荧光定量PCR验证了该猜测。该研究补充了猕猴桃GRAS基因家族鉴定分析的空白,为猕猴桃抗寒研究奠定分子基础。
毛可欣, 王海荣, 安淼, 刘腾飞, 王世金, 李健, 李国田. 中华猕猴桃GRAS基因家族鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 297-307.
MAO Ke-xin, WANG Hai-rong, AN Miao, LIU Teng-fei, WANG Shi-jin, LI Jian, LI Guo-tian. Identification of GRAS Gene Family and Expression Analysis Under Low Temperature Stress in Actinidia chinensis[J]. Biotechnology Bulletin, 2023, 39(11): 297-307.
基因Gene | 正向引物Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|
AcGRAS32 | ACATTAGGCTCCCACCACTG | CTCCCGAGTCATTCAACCAT |
AcGRAS3 | AGTTCCGGATGTTGAGGTTG | TTTGAAGCGGGGTAAGAATG |
AcGRAS53 | TTCCAATCCTGCAATGAACA | AGGAATGATGCGGATCTGAC |
AcGRAS79 | GGTCGATGATCTTTCCGTGT | TCCCGAAGAGCTTCAGAAAA |
AcGRAS6 | GAACGAAGGTTTTCGCTCTG | ACTGGATCCCCTGAGCTTTT |
AcGRAS42 | AGTCGGCGATGAGCTTAAAA | GGAACCTTGTACAGCCGAAA |
Actin | GTGCTCAGTGGTGGTTCAA | GACGCTGTATTTCCTCTCAG |
表1 实时荧光定量PCR引物
Table 1 Primers used for quantitative real-time PCR
基因Gene | 正向引物Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|
AcGRAS32 | ACATTAGGCTCCCACCACTG | CTCCCGAGTCATTCAACCAT |
AcGRAS3 | AGTTCCGGATGTTGAGGTTG | TTTGAAGCGGGGTAAGAATG |
AcGRAS53 | TTCCAATCCTGCAATGAACA | AGGAATGATGCGGATCTGAC |
AcGRAS79 | GGTCGATGATCTTTCCGTGT | TCCCGAAGAGCTTCAGAAAA |
AcGRAS6 | GAACGAAGGTTTTCGCTCTG | ACTGGATCCCCTGAGCTTTT |
AcGRAS42 | AGTCGGCGATGAGCTTAAAA | GGAACCTTGTACAGCCGAAA |
Actin | GTGCTCAGTGGTGGTTCAA | GACGCTGTATTTCCTCTCAG |
图10 GRAS基因在猕猴桃越冬期表达分析 1-3分别表示2020年11月15日、2021年1月15日、2021年3月15日的越冬期猕猴桃枝条
Fig. 10 Analysis of GRAS gene expression in kiwifruit during overwintering 1-3 represents kiwifruit branches in overwintering period on November 15, 2020, January 15, 2021 and March 15, 2021 respectively
图11 低温处理下猕猴桃6个GRAS基因的表达 不同字母表示不同处理时间在0.05水平上差异显著。*,**表示处理与对照在0.05和0.01水平差异显著
Fig. 11 Expression analysis of 6 kiwifruit GRAS genes under low temperature treatment Different letters indicate that there are significant differences in genes at the level of 0.05 under different treatment times. *, ** indicated significant difference between treatment and control at 0.05 and 0.01 levels
[1] | 李新伟, 李建强, Soejarto DD. 中国猕猴桃科新异名[J]. 植物分类学报, 2007, 45(5): 633-660. |
Li XW, Li JQ, Soejarto DD. New synonyms in Actinidiaceae from China[J]. Acta Phytotaxon Sin, 2007, 45(5): 633-660..
doi: 10.1360/aps06061 URL |
|
[2] | 廖慧苹, 梅兵, 鲍荣粉, 等. 中国猕猴桃资源的利用与品种开发研究[J]. 落叶果树, 2018, 50(3): 33-35. |
Liao HP, Mei B, Bao RF, et al. Study on utilization and variety development of kiwifruit resources in China[J]. Deciduous Fruits, 2018, 50(3): 33-35. | |
[3] | 徐小彪, 张秋明. 中国猕猴桃种质资源的研究与利用[J]. 植物学通报, 2003, 20(6): 648-655. |
Xu XB, Zhang QM. Researches and utilizations of germplasm resource of kiwifruit in China[J]. Chin Bull Bot, 2003, 20(6): 648-655. | |
[4] | 钟彩虹, 黄文俊, 李大卫, 等. 世界猕猴桃产业发展及鲜果贸易动态分析[J]. 中国果树, 2021(7): 101-108. |
Zhong CH, Huang WJ, Li DW, et al. Dynamic analysis of kiwifruit industry development and fresh fruit trade in the world[J]. China Fruits, 2021(7): 101-108. | |
[5] | 屈振江, 周广胜. 中国主栽猕猴桃品种的气候适宜性区划[J]. 中国农业气象, 2017, 38(4): 257-266. |
Qu ZJ, Zhou GS. Regionalization of climatic suitability for major kiwifruit cultivars in China[J]. Chin J Agrometeorology, 2017, 38(4): 257-266. | |
[6] | 黄永红, 史修柱, 李桂云, 等. 2016年泰山南麓猕猴桃冻害调查与分析[J]. 落叶果树, 2016, 48(6): 17-19. |
Huang YH, Shi XZ, Li GY, et al. Investigation and analysis of kiwifruit freezing injury at the southern foot of Mount Tai in 2016[J]. Deciduous Fruits, 2016, 48(6): 17-19. | |
[7] | 李广文, 贺瑶, 李红娟, 等. 陕西宝鸡产区猕猴桃冻害发生规律调查[J]. 西北园艺: 果树, 2018(2): 48-51. |
Li GW, He Y, Li HJ, et al. Investigation on the occurrence law of kiwifruit freezing injury in Baoji production area of Shanxi province[J]. Northwest Hortic, 2018(2): 48-51. | |
[8] | Aoyanagi T, Ikeya S, Kobayashi A, et al. Gene regulation via the combination of transcription factors in the INDETERMINATE DOMAIN and GRAS families[J]. Genes: Basel, 2020, 11(6): E 613. |
[9] |
Pysh LD, Wysocka-Diller JW, Camilleri C, et al. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes[J]. Plant J, 1999, 18(1): 111-119.
pmid: 10341448 |
[10] | Hirano Y, Nakagawa M, Suyama T, et al. Structure of the SHR-SCR heterodimer bound to the BIRD/IDD transcriptional factor JKD[J]. Nat Plants, 2017, 3(3): 1-10. |
[11] |
Cenci A, Rouard M. Evolutionary analyses of GRAS transcription factors in angiosperms[J]. Front Plant Sci, 2017, 8: 273.
doi: 10.3389/fpls.2017.00273 pmid: 28303145 |
[12] |
de Lucas M, Davière JM, Rodríguez-Falcón M, et al. A molecular framework for light and gibberellin control of cell elongation[J]. Nature, 2008, 451(7177): 480-484.
doi: 10.1038/nature06520 |
[13] |
Feng SH, Martinez C, Gusmaroli G, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins[J]. Nature, 2008, 451(7177): 475-479.
doi: 10.1038/nature06448 |
[14] |
Helariutta Y, Fukaki H, Wysocka-Diller J, et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling[J]. Cell, 2000, 101(5): 555-567.
doi: 10.1016/s0092-8674(00)80865-x pmid: 10850497 |
[15] |
Tanabe S, Onodera H, Hara N, et al. The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23[J]. Biosci Biotechnol Biochem, 2016, 80(1): 145-151.
doi: 10.1080/09168451.2015.1075866 URL |
[16] |
Fode B, Siemsen T, Thurow C, et al. The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters[J]. Plant Cell, 2008, 20(11): 3122-3135.
doi: 10.1105/tpc.108.058974 URL |
[17] |
Achard P, Gong F, Cheminant S, et al. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism[J]. Plant Cell, 2008, 20(8): 2117-2129.
doi: 10.1105/tpc.108.058941 pmid: 18757556 |
[18] |
Achard P, Renou JP, Berthomé R, et al. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species[J]. Curr Biol, 2008, 18(9): 656-660.
doi: 10.1016/j.cub.2008.04.034 pmid: 18450450 |
[19] | 牛义岭, 姜秀明, 许向阳. 番茄GRAS转录因子家族基因SIGLD1的克隆及VIGS载体构建[J]. 基因组学与应用生物学, 2016, 35(8): 2155-2160. |
Niu YL, Jiang XM, Xu XY. Cloning and VIGS vector construction of GRAS transcription factors family gene SIGLD1 from tomato[J]. Genom Appl Biol, 2016, 35(8): 2155-2160. | |
[20] | 石瑞, 曹诣斌, 陈文荣, 等. 佛手GRAS基因的克隆及表达分析[J]. 浙江师范大学学报: 自然科学版, 2011, 34(4): 446-451. |
Shi R, Cao YB, Chen WR, et al. On cDNA cloning and expression analysis of GRAS gene in fingered citron[J]. J Zhejiang Norm Univ Nat Sci, 2011, 34(4): 446-451. | |
[21] | 李丽丽, 曾卫军, 李艳红, 等. 独行菜GRAS转录因子家族分析及LaSCL18基因克隆与冷相关性研究[J]. 分子植物育种, 2017, 15(9): 3428-3437. |
Li LL, Zeng WJ, Li YH, et al. Analysis of GRAS family transcription factors, cloning and researching cold tolerance of LaSCL18 gene in Lepidium[J]. Mol Plant Breed, 2017, 15(9): 3428-3437. | |
[22] |
Yang M, Yang Q, Fu T, et al. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance[J]. Plant Cell Rep, 2011, 30(3): 373-388.
doi: 10.1007/s00299-010-0940-7 URL |
[23] | 周莲洁, 杨中敏, 张富春, 等. 新疆盐穗木GRAS转录因子基因克隆及表达分析[J]. 西北植物学报, 2013, 33(6): 1091-1097. |
Zhou LJ, Yang ZM, Zhang FC, ey al. Expression analysis and cloning of GRAS transcription factor gene from Halostachys caspica[J]. Acta Bot Boreali-Occidentalia Sin, 2013, 33(6): 1091-1097. | |
[24] |
Tian C, Wan P, Sun S, et al. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis[J]. Plant Mol Biol, 2004, 54(4): 519-532.
doi: 10.1023/B:PLAN.0000038256.89809.57 URL |
[25] |
Wang L, Ding X, Gao Y, et al. Genome-wide identification and characterization of GRAS genes in soybean(Glycine max)[J]. BMC Plant Biol, 2020, 20(1): 415.
doi: 10.1186/s12870-020-02636-5 |
[26] | To VT, Shi Q, Zhang Y, et al. Genome-wide analysis of the GRAS gene family in barley(Hordeum vulgare L.)[J]. Genes: Basel, 2020, 11(5): E553. |
[27] | 唐瑞, 韩妮, 虎亚静, 等. 黄瓜GRAS家族全基因组鉴定与表达分析[J]. 分子植物育种, 2020, 19(13): 4242-4251. |
Tang R, Han N, Hu YJ, et al. Genome-wide identification and expression analysis of GRAS genes in cucumber[J]. Mol Plant Breed, 2020, 19(13): 4242-4251. | |
[28] | 张文慧, 何光鑫, 王子鑫, 等. 绿豆GRAS基因家族鉴定及其非生物胁迫下的表达模式分析[J]. 农业生物技术学报, 2022, 30(5): 861-872. |
Zhang WH, He GX, Wang ZX, et al. Identification of GRAS gene family and its expression pattern analysis under abiotic stress in Vigna radiata[J]. J Agric Biotechnol, 2022, 30(5): 861-872. | |
[29] | 刘凯, 赵星哲, 王红霞, 等. 核桃JrGRAS基因家族鉴定与响应低温胁迫基因筛选[J]. 河北农业大学学报, 2021, 44(2): 27-40. |
Liu K, Zhao XZ, Wang HX, et al. Identification of walnut JrGRAS gene family and screening of genes in response to low temperature stress[J]. J Agric Univ Hebei, 2021, 44(2): 27-40. | |
[30] |
李晨, 赵雪惠, 王庆杰, 等. 桃GRAS家族全基因组鉴定与响应UV-B的表达模式分析[J]. 中国农业科学, 2019, 52(24): 4567-4581.
doi: 10.3864/j.issn.0578-1752.2019.24.011 |
Li C, Zhao XH, Wang QJ, et al. Genome identification of PpGRAS family and expression pattern analysis of responding to UV-B in peach[J]. Sci Agric Sin, 2019, 52(24): 4567-4581. | |
[31] |
Yue J, Liu J, Tang W, et al. Kiwifruit genome database(KGD): a comprehensive resource for kiwifruit genomics[J]. Hortic Res, 2020, 7: 117.
doi: 10.1038/s41438-020-0338-9 |
[32] |
Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications[J]. BMC Bioinformatics, 2009, 10: 421.
doi: 10.1186/1471-2105-10-421 pmid: 20003500 |
[33] | Tian F, Yang DC, Meng YQ, et al. PlantRegMap: charting functional regulatory maps in plants[J]. Nucleic Acids Res, 2020, 48(D1): D1104-D1113. |
[34] |
Lu S, Wang J, Chitsaz F, et al. CDD/SPARCLE: the conserved domain database in 2020[J]. Nucleic Acids Res, 2020, 48(d1): D265-D268.
doi: 10.1093/nar/gkz991 URL |
[35] | Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX[J]. Curr Protoc Bioinformatics, 2002, Chapter 2: Unit 2.3. |
[36] |
Chen C, Chen H, Zhang Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8): 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[37] |
Wang YP, Tang HB, Debarry JD, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7): e49.
doi: 10.1093/nar/gkr1293 URL |
[38] |
Novembre JA. Accounting for background nucleotide composition when measuring codon usage bias[J]. Mol Biol Evol, 2002, 19(8): 1390-1394.
pmid: 12140252 |
[39] |
Sueoka N. Near homogeneity of PR2-bias fingerprints in the human genome and their implications in phylogenetic analyses[J]. J Mol Evol, 2001, 53(4): 469-476.
doi: 10.1007/s002390010237 URL |
[40] |
Hakoshima T. Structural basis of the specific interactions of GRAS family proteins[J]. FEBS Lett, 2018, 592(4): 489-501.
doi: 10.1002/1873-3468.12987 pmid: 29364510 |
[41] |
Bolle C. The role of GRAS proteins in plant signal transduction and development[J]. Planta, 2004, 218(5): 683-692.
doi: 10.1007/s00425-004-1203-z pmid: 14760535 |
[42] |
Sun TP. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants[J]. Curr Biol, 2011, 21(9): 338-345.
doi: 10.1016/j.cub.2011.01.036 URL |
[43] |
Wang LJ, Roossinck MJ. Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants[J]. Plant Mol Biol, 2006, 61(4): 699-710.
doi: 10.1007/s11103-006-0041-8 URL |
[44] |
Zhang H, Li J, Wang RX, et al. Comparative analysis of expansin gene codon usage patterns among eight plant species[J]. J Biomol Struct Dyn, 2019, 37(4): 910-917.
doi: 10.1080/07391102.2018.1442746 pmid: 29480091 |
[45] | 侯倩倩. 外源基因在产甘油假丝酵母中的表达策略及应用研究[D]. 无锡: 江南大学, 2019. |
Hou QQ. Expression strategy and application of exogenous genes in Candida glycerinogenes[D]. Wuxi: Jiangnan University, 2019. | |
[46] |
Yan XW, Hoek TA, Vale RD, et al. Dynamics of translation of single mRNA molecules in vivo[J]. Cell, 2016, 165(4): 976-989.
doi: 10.1016/j.cell.2016.04.034 URL |
[47] | 殷龙飞, 张中保, 于荣, 等. 植物GRAS家族蛋白结构和功能的研究进展[J]. 分子植物育种, 2019, 17(19): 6323-6331. |
Yin LF, Zhang ZB, Yu R, et al. Progress of the structural and functional analysis of GRAS gene in plants[J]. Mol Plant Breed, 2019, 17(19): 6323-6331. | |
[48] |
Wang Z, Wong DCJ, Wang Y, et al. GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response[J]. Plant Physiol, 2021, 186(3): 1660-1678.
doi: 10.1093/plphys/kiab142 pmid: 33752238 |
[1] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[2] | 赖瑞联, 冯新, 高敏霞, 路喻丹, 刘晓驰, 吴如健, 陈义挺. 猕猴桃过氧化氢酶基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2023, 39(4): 136-147. |
[3] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[4] | 蒋路园, 丰美静, 杜雨晴, 邸葆, 陈段芬, 邱德有, 杨艳芳. 红豆杉低温半致死温度和低温胁迫下紫杉烷含量[J]. 生物技术通报, 2023, 39(3): 232-242. |
[5] | 张晓燕, 杨淑华, 丁杨林. 植物感知和传递低温信号的分子机制[J]. 生物技术通报, 2023, 39(11): 28-35. |
[6] | 邢媛, 宋健, 李俊怡, 郑婷婷, 刘思辰, 乔治军. 谷子AP基因家族鉴定及其对非生物胁迫的响应分析[J]. 生物技术通报, 2023, 39(11): 238-251. |
[7] | 尤垂淮, 谢津津, 张婷, 崔天真, 孙欣路, 臧守建, 武奕凝, 孙梦瑶, 阙友雄, 苏亚春. 钩吻脂氧合酶基因 GeLOX1 的鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 318-327. |
[8] | 于晓玲, 李文彬, 李智博, 阮孟斌. 木薯MeMYC2.2基因耐低温功能研究[J]. 生物技术通报, 2023, 39(1): 224-231. |
[9] | 金姣姣, 刘自刚, 米文博, 徐明霞, 邹娅, 徐春梅, 赵彩霞. 利用RNA-Seq鉴定调控甘蓝型油菜叶片光合特性的低温胁迫应答基因[J]. 生物技术通报, 2022, 38(4): 126-142. |
[10] | 崔洁冰, 张萌, 张莹婷, 徐进. 低温胁迫对柳杉不同无性系的影响及抗寒性评价[J]. 生物技术通报, 2022, 38(3): 31-40. |
[11] | 乌凤章, 王贺新. 蛋白质泛素化介导的植物低温胁迫反应[J]. 生物技术通报, 2021, 37(6): 225-235. |
[12] | 朱海云, 马瑜, 柯杨, 李勃. 猕猴桃溃疡病菌拮抗菌的筛选、鉴定及其对植物病原真菌的抗性[J]. 生物技术通报, 2021, 37(6): 66-72. |
[13] | 孔春艳, 陈永坤, 王莎莎, 郝大海, 杨宇, 龚明. 小桐子低温胁迫下microRNA实时荧光定量PCR内参的筛选与比较[J]. 生物技术通报, 2019, 35(7): 25-32. |
[14] | 张保青, 邵敏, 黄玉新, 黄杏, 宋修鹏, 陈虎, 王盛, 谭秦亮, 杨丽涛, 李杨瑞. 甘蔗抗坏血酸过氧化物酶基因ScAPX1的克隆和表达分析[J]. 生物技术通报, 2019, 35(12): 31-37. |
[15] | 刘丽丽, 朱华, 闫艳春, 王晓雯, 张蓉, 朱建亚. 鱼类低温耐受机制与功能基因研究进展[J]. 生物技术通报, 2018, 34(8): 50-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||