生物技术通报 ›› 2024, Vol. 40 ›› Issue (6): 45-56.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1117
苑海鹏1,2(), 叶云舒1,2, 司皓1,2, 纪秋研1,2, 张玉红1,2()
收稿日期:
2023-11-27
出版日期:
2024-06-26
发布日期:
2024-06-24
通讯作者:
张玉红,男,博士,教授,研究方向:药用植物生理及其次生代谢产物;E-mail: pzhangyh@nefu.edu.cn作者简介:
苑海鹏,男,硕士研究生,研究方向:植物生理生态学;E-mail: 363320733@qq.com
基金资助:
YUAN Hai-peng YE Yun-shu SI Hao JI Qiu-yan ZHANG Yu-hong1,2()
Received:
2023-11-27
Published:
2024-06-26
Online:
2024-06-24
摘要:
丛枝菌根(arbuscular mycorrhizal,AM)是球囊菌门真菌与植物根系组成的共生体系,71%的维管植物有AM。球囊菌门(Glomeromycota)现下设1纲4目11科27属,约有300种丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)。AMF可以提高植物对干旱、盐度、重金属等非生物胁迫和由其他生物引起的生物胁迫的抵抗力以及调节植物次生代谢产物的合成。本文综述了AMF对植物逆境胁迫和次生代谢产物影响的研究进展。阐述了AMF对植物形态结构、生理生化、基因表达和次生代谢等生命活动的影响。总结了AMF提高植物逆境胁迫抗性和调节植物次生代谢产物合成方面的作用机理。旨在为深入研究AMF响应植物逆境胁迫和调节植物次生代谢产物合成的作用机理提供参考。
苑海鹏, 叶云舒, 司皓, 纪秋研, 张玉红. 丛枝菌根真菌对植物逆境胁迫抗性及次生代谢产物合成的影响[J]. 生物技术通报, 2024, 40(6): 45-56.
YUAN Hai-peng YE Yun-shu SI Hao JI Qiu-yan ZHANG Yu-hong. Effects of Arbuscular Mycorrhizal Fungi on Plant Stress Resistance and Secondary Metabolite Synthesis[J]. Biotechnology Bulletin, 2024, 40(6): 45-56.
[1] |
Brundrett MC, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity[J]. New Phytol, 2018, 220(4): 1108-1115.
doi: 10.1111/nph.14976 pmid: 29355963 |
[2] |
王幼珊, 刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录[J]. 菌物学报, 2017, 36(7): 820-850.
doi: 10.13346/j.mycosystema.170078 |
Wang YS, Liu RJ. A checklist of arbuscular mycorrhizal fungi in the recent taxonomic system of Glomeromycota[J]. Mycosystema, 2017, 36(7): 820-850. | |
[3] | Smith SE, Read DJ. Mycorrhizal symbiosis[M]. 3rd ed. Amsterdam: Academic Press, 2008. |
[4] | Ahammed GJ, Shamsy R, Liu AR, et al. Arbuscular mycorrhizal fungi-induced tolerance to chromium stress in plants[J]. Environ Pollut, 2023, 327: 121597. |
[5] | Johnson NC, Rowland DL, Corkidi L, et al. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands[J]. Ecology, 2003, 84(7): 1895-1908. |
[6] |
Miller RM, Jastrow JD, Reinhardt DR. External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities[J]. Oecologia, 1995, 103(1): 17-23.
doi: 10.1007/BF00328420 pmid: 28306940 |
[7] |
Delavaux CS, Smith-Ramesh LM, Kuebbing SE. Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils[J]. Ecology, 2017, 98(8): 2111-2119.
doi: 10.1002/ecy.1892 pmid: 28500779 |
[8] | Carrara JE, Reddivari L, Lehotay SJ, et al. Arbuscular mycorrhizal fungi increase the yield and nutritional quality of yellow and purple fleshed potatoes(Solanum tuberosum)[J]. Am J Potato Res, 2023, 100(3): 210-220. |
[9] | Sun MF, Yuan D, Hu XC, et al. Effects of mycorrhizal fungi on plant growth, nutrient absorption and phytohormones levels in tea under shading condition[J]. Not Bot Horti Agrobo, 2020, 48(4): 2006-2020. |
[10] |
Birhane E, Sterck FJ, Fetene M, et al. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions[J]. Oecologia, 2012, 169(4): 895-904.
doi: 10.1007/s00442-012-2258-3 pmid: 22286084 |
[11] | Zhao W, Zhu SX, Yang XQ, et al. Arbuscular mycorrhizal fungi alter rhizosphere bacterial community characteristics to improve Cr tolerance of Acorus calamus[J]. Ecotoxicol Environ Saf, 2023, 253: 114652. |
[12] | Genre A, Chabaud M, Balzergue C, et al. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone[J]. New Phytol, 2013, 198(1): 190-202. |
[13] | Zhang B, Shi F, Zheng X, et al. Effects of AMF compound inoculants on growth, ion homeostasis, and salt tolerance-related gene expression in Oryza sativa L. under salt treatments[J]. Rice, 2023, 16(1): 18. |
[14] | Alam MZ, Choudhury TR, Mridha MAU. Arbuscular mycorrhizal fungi enhance biomass growth, mineral content, and antioxidant activity in tomato plants under drought stress[J]. J Food Qual, 2023, 2023: 2581608. |
[15] | Sadak MS. Physiological role of arbuscular mycorrhizae and vitamin B1 on Productivity and physio-biochemical traits of white lupine(Lupinustermis L.) under salt stress[J]. Gesunde Pflanz, 2023, 75(5): 1885-1896. |
[16] | Zhang MG, Shi ZY, Lu SC, et al. AMF inoculation alleviates molybdenum toxicity to maize by protecting leaf performance[J]. J Fungi, 2023, 9(4): 479. |
[17] | Gaši E, Radić T, Čarija M, et al. Arbuscular mycorrhizal fungi induce changes of photosynthesis-related parameters in virus infected grapevine[J]. Plants, 2023, 12(9): 1783. |
[18] |
van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecol Lett, 2008, 11(3): 296-310.
doi: 10.1111/j.1461-0248.2007.01139.x pmid: 18047587 |
[19] | Amani Machiani M, Javanmard A, Ostadi A, et al. Improvement in essential oil quantity and quality of thyme(Thymus vulgaris L.) by integrative application of chitosan nanoparticles and arbuscular mycorrhizal fungi under water stress conditions[J]. Plants, 2023, 12(7): 1422. |
[20] | Rasouli F, Hassanpouraghdam MB, Pirsarandib Y, et al. Improvements in the biochemical responses and Pb and Ni phytoremediation of lavender(Lavandula angustifolia L.) plants through Funneliformis mosseae inoculation[J]. BMC Plant Biol, 2023, 23(1): 252. |
[21] |
Rojas-Andrade R, Cerda-García-Rojas C, Frías-Hernández J, et al. Changes in the concentration of trigonelline in a semi-arid leguminous plant(Prosopis laevigata)induced by an arbuscular mycorrhizal fungus during the presymbiotic phase[J]. Mycorrhiza, 2003, 13(1): 49-52.
pmid: 12634919 |
[22] | Salika R, Riffat J. Abiotic stress responses in maize: a review[J]. Acta Physiol Plant, 2021, 43(9): 130. |
[23] | Zong JW, Zhang ZL, Huang PL, et al. Arbuscular mycorrhizal fungi alleviates salt stress in Xanthoceras sorbifolium through improved osmotic tolerance, antioxidant activity, and photosynthesis[J]. Front Microbiol, 2023, 14: 1138771. |
[24] | 喻志, 梁坤南, 黄桂华, 等. 丛枝菌根真菌对植物抗旱性研究进展[J]. 草业科学, 2021, 38(4): 640-653. |
Yu Z, Liang KN, Huang GH, et al. Research progress on the mechanisms of arbuscular mycorrhizal fungi on drought resistance in plants[J]. Pratacultural Sci, 2021, 38(4): 640-653. | |
[25] |
Begum N, Qin C, Ahanger MA, et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance[J]. Front Plant Sci, 2019, 10: 1068.
doi: 10.3389/fpls.2019.01068 pmid: 31608075 |
[26] |
陈保冬, 于萌, 郝志鹏, 等. 丛枝菌根真菌应用技术研究进展[J]. 应用生态学报, 2019, 30(3): 1035-1046.
doi: 10.13287/j.1001-9332.201903.037 |
Chen BD, Yu M, Hao ZP, et al. Research progress in arbuscular mycorrhizal technology[J]. Chin J Appl Ecol, 2019, 30(3): 1035-1046.
doi: 10.13287/j.1001-9332.201903.037 |
|
[27] | 张伟珍, 古丽君, 段廷玉. AM真菌提高植物抗逆性的机制[J]. 草业科学, 2018, 35(3): 491-507. |
Zhang WZ, Gu LJ, Duan TY. Research progress on the mechanism of AM fungi for improving plant stress resistance[J]. Pratacultural Sci, 2018, 35(3): 491-507. | |
[28] |
Gray SB, Brady SM. Plant developmental responses to climate change[J]. Dev Biol, 2016, 419(1): 64-77.
doi: S0012-1606(16)30264-0 pmid: 27521050 |
[29] | Soussani FE, Boutasknit A, Ben-Laouane R et al. Arbuscular mycorrhizal fungi and compost-based biostimulants enhance fitness,physiological responses,yield,and quality traits of drought-stressed tomato plants[J]. Plants-Basel, 2023, 12 (9) :1856. |
[30] | Begum N, Xiao Y, Wang L et al. Arbuscular mycorrhizal fungus Rhizophagus irregularis alleviates drought stress in soybean with overexpressing the GmSPL9d gene by promoting photosynthetic apparatus and regulating the antioxidant system[J]. Microbiol Res, 2023, 273: 127398. |
[31] | 李越, 李利, 张斌, 等. 接种AMF提高干旱胁迫下土壤微生物活性和燕麦抗旱能力[J]. 植物营养与肥料学报, 2023, 29(6): 1135-1149. |
Li Y, Li L, Zhang B, et al. AMF inoculation positively regulates soil microbial activity and drought tolerance of oat[J]. J Plant Nutr Fertil, 2023, 29(6): 1135-1149. | |
[32] | Zhao SS, Zhang QK, Liu MY, et al. Regulation of plant responses to salt stress[J]. Int J Mol Sci, 2021, 22(9): 4609. |
[33] | Baltazar-Bernal O, Spinoso-Castillo JL, Mancilla-Álvarez E, et al. Arbuscular mycorrhizal fungi induce tolerance to salinity stress in taro plantlets(Colocasia esculenta L. schott)during acclimatization[J]. Plants, 2022, 11(13): 1780. |
[34] | 张春楠, 张瑞芳, 王红, 等. 丛枝菌根真菌影响作物非生物胁迫耐受性的研究进展[J]. 微生物学通报, 2020, 47(11): 3880-3891. |
Zhang CN, Zhang RF, Wang H, et al. Effects of arbuscular mycorrhizal fungi on abiotic stress tolerance in crops: a review[J]. Microbiol China, 2020, 47(11): 3880-3891. | |
[35] | 滕秋梅, 张中峰, 李红艳, 等. 丛枝菌根真菌对镉胁迫下芦竹生长、光合特性和矿质营养的影响[J]. 土壤, 2020, 52(6): 1212-1221. |
Teng QM, Zhang ZF, Li HY, et al. Effects of arbuscular mycorrhizal fungi on growth, photosynthesis characteristics and mineral nutrition of Arundo donax under Cd stress[J]. Soils, 2020, 52(6): 1212-1221. | |
[36] | 张夏燕, 刘慧娜, 苏江洪, 等. 非生物胁迫对芍药属植物生长发育影响的研究进展[J]. 分子植物育种, 2018, 16(15): 5072-5079. |
Zhang XY, Liu HN, Su JH, et al. Research progress on the effect of abiotic stress on the growth and development of Paeonia plant[J]. Mol Plant Breed, 2018, 16(15): 5072-5079. | |
[37] | Zeni V, Grassi A, Santin M, et al. Leaf UV-B irradiation and mycorrhizal symbionts affect lettuce VOC emissions and defence mechanisms, but not aphid feeding preferences[J]. Insects, 2022, 14(1): 20. |
[38] | Li W, Zhai YL, Xing HS, et al. Arbuscular mycorrhizal fungi promote photosynthesis in Antirrhinum majus L. under low-temperature and weak-light conditions[J]. Not Bot Horti Agrobo, 2023, 51(1): 13012. |
[39] | Zhang XH, Liu YH, Liu BW, et al. Arbuscular mycorrhiza fungus improved growth, antioxidant defense, and endogenous hormones in tall fescue under low-light stress[J]. S Afr N J Bot, 2019, 127: 43-50. |
[40] | Guo YP, Zhou HF, Zhang LC. Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species[J]. Sci Hortic, 2006, 108(3): 260-267. |
[41] | Jumrani K, Bhatia VS, Kataria S, et al. Inoculation with arbuscular mycorrhizal fungi alleviates the adverse effects of high temperature in soybean[J]. Plants, 2022, 11(17): 2210. |
[42] | Mathur S, Agnihotri R, Sharma MP, et al. Effect of high-temperature stress on plant physiological traits and mycorrhizal symbiosis in maize plants[J]. J Fungi, 2021, 7(10): 867. |
[43] | Liu ZL, Bi ST, Meng JR, et al. Arbuscular mycorrhizal fungi enhanced rice proline metabolism under low temperature with nitric oxide involvement[J]. Front Plant Sci, 2022, 13: 962460. |
[44] | 徐冬梅, 贺忠群, 赵英鹏, 等. 低温胁迫下AMF对景天三七生长和生理特性的影响[J]. 草业科学, 2016, 33(12): 2452-2464. |
Xu DM, He ZQ, Zhao YP, et al. Effects of arbuscular mycorrhizal fungi on growth and physiological characteristics of Sedum aizoon under low temperature stress[J]. Pratacultural Sci, 2016, 33(12): 2452-2464. | |
[45] | Mathur S, Jajoo A. Arbuscular mycorrhizal fungi protects maize plants from high temperature stress by regulating photosystem II heterogeneity[J]. Ind Crops Prod, 2020, 143: 111934. |
[46] | 张丽霞, 彭建明, 马洁. 植物营养缺素研究进展[J]. 中国农学通报, 2010, 26(8): 157-163. |
Zhang LX, Peng JM, Ma J. Study progress on nutrient deficiency of plants[J]. Chin Agric Sci Bull, 2010, 26(8): 157-163.
doi: 10.11924/j.issn.1000-6850.2009-2018 |
|
[47] | Liang LY, Liu BX, Huang D, et al. Arbuscular mycorrhizal fungi alleviate low phosphorus stress in maize genotypes with contrasting root systems[J]. Plants, 2022, 11(22): 3105. |
[48] | Kabir AH, Debnath T, Das U, et al. Arbuscular mycorrhizal fungi alleviate Fe-deficiency symptoms in sunflower by increasing iron uptake and its availability along with antioxidant defense[J]. Plant Physiol Biochem, 2020, 150: 254-262. |
[49] | Kchikich A, El Omari R, Kabach I, et al. Effect of arbuscular mycorrhizal fungus and the γ-aminobutyric acid treatment in nitrate assimilation under nitrogen deficiency in Sorghum plant[J]. Russ J Plant Physiol, 2021, 68(5): 901-908. |
[50] | Ju SM, Wang LP, Chen JY. Effects of silicon on the growth, photosynthesis and chloroplast ultrastructure of Oryza sativa L. seedlings under acid rain stress[J]. Silicon, 2020, 12(3): 655-664. |
[51] | Du EZ, Dong D, Zeng XT, et al. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China[J]. Sci Total Environ, 2017, 605-606: 764-769. |
[52] | Li XY, Mu CS, Gao ZW, et al. Salinity-alkalinity tolerance in wheat: seed germination, early seedling growth, ion relations and solute accumulation[J]. Afr J Agric Res, 2012, 7(3): 467-474. |
[53] |
Noctor G, Mhamdi A, Foyer CH. The roles of reactive oxygen metabolism in drought: not so cut and dried[J]. Plant Physiol, 2014, 164(4): 1636-1648.
doi: 10.1104/pp.113.233478 pmid: 24715539 |
[54] | Wang YN, Lin JX, Yang F, et al. Arbuscular mycorrhizal fungi improve the growth and performance in the seedlings of Leymus chinensis under alkali and drought stresses[J]. PeerJ, 2022, 10: e12890. |
[55] | Wang YH, Liu SY, Shao CL, et al. Enhancement of photosynthetic parameters and growth of Zelkova serrata by arbuscular mycorrhizal fungi under simulated sulfuric acid rain[J]. Plant Ecol, 2021, 222(12): 1361-1374. |
[56] | He XB, Shao CL, Wu AP, et al. Arbuscular mycorrhizal fungi enhance nutrient acquisition and reduce aluminum toxicity in Lespedeza formosa under acid rain[J]. Environ Sci Pollut Res Int, 2022, 29(20): 29904-29916. |
[57] | Farghaly FA, Nafady NA, Abdel-Wahab DA. The efficiency of arbuscular mycorrhiza in increasing tolerance of Triticum aestivum L. to alkaline stress[J]. BMC Plant Biol, 2022, 22(1): 490. |
[58] | 唐威华, 冷冰, 何祖华. 植物抗病虫与抗逆[J]. 植物生理学报, 2017, 53(8): 1333-1336. |
Tang WH, Leng B, He ZH. Biotic and abiotic stress resistance in plants[J]. Plant Physiol J, 2017, 53(8): 1333-1336. | |
[59] | 陈书霞, 姜永华, 刘宏久, 等. AM真菌和根结线虫互作对黄瓜生长及生理特征的影响[J]. 植物保护学报, 2012, 39(3): 253-259. |
Chen SX, Jiang YH, Liu HJ, et al. The effects of interaction between fungus Arbuscular mycorrhiza and root-knot nematode Meloidogyne incognita on the growth and physiological characteristics of cucumber[J]. J Plant Prot, 2012, 39(3): 253-259. | |
[60] | Li YD, Nan ZB, Matthew C, et al. Arbuscular mycorrhizal fungus changes alfalfa(Medicago sativa)metabolites in response to leaf spot(Phoma medicaginis)infection, with subsequent effects on pea aphid(Acyrthosiphon pisum)behavior[J]. New Phytol, 2023, 239(1): 286-300. |
[61] | Saldajeno MGB, Hyakumachi M. The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber(Cucumis sativus)seedlings[J]. Ann Appl Biol, 2011, 159(1): 28-40. |
[62] | 朱红惠, 龙良坤, 羊宋贞, 等. AM真菌对青枯菌和根际细菌群落结构的影响[J]. 菌物学报, 2005, 24(1): 137-142. |
Zhu HH, Long LK, Yang SZ, et al. Effects of AM fungi on the community structure of Ralstonia solanacearum and rhizosphere bacteria[J]. Mycosystema, 2005, 24(1): 137-142. | |
[63] | 张宸瑞, 李晓岗, 顾雯, 等. 丛枝菌根真菌促进植物抵抗生物胁迫作用机制的研究进展[J]. 中草药, 2023, 54(9): 3022-3031. |
Zhang CR, Li XG, Gu W, et al. Research progress on mechanism of arbuscular mycorrhizal fungi promoting plant resistance to biological stress[J]. Chin Tradit Herb Drugs, 2023, 54(9): 3022-3031. | |
[64] | 杜丽娜, 张存莉, 朱玮, 等. 植物次生代谢合成途径及生物学意义[J]. 西北林学院学报, 2005, 20(3): 150-155. |
Du LN, Zhang CL, Zhu W, et al. The synthetic way and biological significance of plant secondary metabolism[J]. J Northwest For Univ, 2005, 20(3): 150-155. | |
[65] | 阎秀峰, 王洋, 李一蒙. 植物次生代谢及其与环境的关系[J]. 生态学报, 2007, 27(6): 2554-2562. |
Yan XF, Wang Y, Li YM. Plant secondary metabolism and its response to environment[J]. Acta Ecol Sin, 2007, 27(6): 2554-2562. | |
[66] |
Erb M, Kliebenstein DJ. Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy[J]. Plant Physiol, 2020, 184(1): 39-52.
doi: 10.1104/pp.20.00433 pmid: 32636341 |
[67] | 鲁守平, 隋新霞, 孙群, 等. 药用植物次生代谢的生物学作用及生态环境因子的影响[J]. 天然产物研究与开发, 2006, 18(6): 1027-1032. |
Lu SP, Sui XX, Sun Q, et al. Biological functions of secondary metabolism of medicinal plants and influences of ecological environment[J]. Nat Prod Res Dev, 2006, 18(6): 1027-1032. | |
[68] | Jan R, Asaf S, Numan M, et al. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions[J]. Agronomy, 2021, 11(5): 968. |
[69] | Palhares Neto L, Silva-Santos L, de Souza LM, et al. Influence of arbuscular mycorrhizal fungi on morphophysiological responses and secondary metabolism in Lippia alba(Verbenaceae)under different water regimes[J]. J Plant Growth Regul, 2023, 42(2): 827-841. |
[70] | Alizadeh S, Fallahi Gharagoz S, Pourakbar L, et al. Arbuscular mycorrhizal fungi alleviate salinity stress and alter phenolic compounds of Moldavian balm[J]. Rhizosphere, 2021, 19: 100417. |
[71] | 王凌健, 方欣, 杨长青, 等. 植物萜类次生代谢及其调控[J]. 中国科学: 生命科学, 2013, 43(12): 1030-1046. |
Wang LJ, Fang X, Yang CQ, et al. Biosynthesis and regulation of secondary terpenoid metabolism in plants[J]. Sci Sin Vitae, 2013, 43(12): 1030-1046. | |
[72] |
Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects[J]. Annu Rev Plant Biol, 2012, 63: 431-450.
doi: 10.1146/annurev-arplant-042110-103854 pmid: 22404468 |
[73] | Amiri R, Nikbakht A, Rahimmalek M, et al. Variation in the essential oil composition, antioxidant capacity, and physiological characteristics of Pelargonium graveolens L. inoculated with two species of mycorrhizal fungi under water deficit conditions[J]. J Plant Growth Regul, 2017, 36(2): 502-515. |
[74] |
Khaosaad T, Vierheilig H, Nell M, et al. Arbuscular mycorrhiza alter the concentration of essential oils in oregano(Origanum Sp., Lamiaceae)[J]. Mycorrhiza, 2006, 16(6): 443-446.
doi: 10.1007/s00572-006-0062-9 pmid: 16909287 |
[75] | Neto LP, Silva-Santos L, Souza L, et al. Mycorrhization changes the antioxidant response and chemical profile of Lippia alba(Verbenaceae)essential oil under salinity conditions[J]. S Afr N J Bot, 2023, 152: 264-277. |
[76] | 董妍玲, 潘学武. 植物次生代谢产物简介[J]. 生物学通报, 2002, 37(11): 17-19. |
Dong YL, Pan XW. Brief introduction of plant secondary metabolites[J]. Bull Biol, 2002, 37(11): 17-19. | |
[77] | Dhakshinamoorthy S, Mariama K, Elsen A, et al. Phenols and lignin are involved in the defence response of banana(Musa)plants to Radopholus similis infection[J]. Nematology, 2014, 16(5): 565-576. |
[78] | Lattanzio V, Lattanzio VMT, Cardinali A, et al. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects[J]. Phytochemistry, 2006:23-67. |
[79] | 邵莹, 吴启南, 周婧, 等. 淡竹叶黄酮对大鼠心肌缺血/再灌注损伤的保护作用[J]. 中国药理学通报, 2013, 29(2): 241-247. |
Shao Y, Wu QN, Zhou J, et al. Protective effects of total flavones from Lophatherum gracile on myocardial ischemia-reperfusion injury in rats[J]. Chin Pharmacol Bull, 2013, 29(2): 241-247. | |
[80] | 李辉敏, 姜登钊, 殷嫦嫦. 刺头复叶耳蕨总提取物与总黄酮体外抗肿瘤活性的比较研究[J]. 中国现代应用药学, 2015, 32(9): 1037-1041. |
Li HM, Jiang DZ, Yin CC. Comparison of anti-tumor activities of total flavones and extracts from Arachniodes exilis(hance)Ching in vitro[J]. Chin J Mod Appl Pharm, 2015, 32(9): 1037-1041. | |
[81] | Duc NH, Vo AT, Haddidi I, et al. Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant Eclipta prostrata(L.) and induce major changes in polyphenol profiles under salt stresses[J]. Front Plant Sci, 2021, 11: 612299. |
[82] | Xie W, Hao ZP, Zhou XF, et al. Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress[J]. Mycorrhiza, 2018, 28(3): 285-300. |
[83] | Fan XX, Lin XT, Ruan QY, et al. Research progress on the biosynthesis and metabolic engineering of the anti-cancer drug camptothecin in Camptotheca acuminate[J]. Ind Crops Prod, 2022, 186: 115270. |
[84] |
Baldwin IT. An ecologically motivated analysis of plant-herbivore interactions in native tobacco[J]. Plant Physiol, 2001, 127(4): 1449-1458.
pmid: 11743088 |
[85] | De la Rosa-Mera CJ, Ferrera-Cerrato R, Alarcón A, et al. Arbuscular mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus[J]. Plant Soil, 2011, 349(1): 367-376. |
[86] | El-Sawah AM, Abdel-Fattah GG, Holford P, et al. Funneliformis constrictum modulates polyamine metabolism to enhance tolerance of Zea mays L. to salinity[J]. Microbiol Res, 2023, 266: 127254. |
[87] | Pandey DK, Malik T, Dey A, et al. Improved growth and colchicine concentration in Gloriosa superba on mycorrhizal inoculation supplemented with phosphorus-fertilizer[J]. Afr J Tradit Complement Altern Med, 2014, 11(2): 439-446. |
[1] | 周晞雯, 成柯, 朱鸿亮. 植物体内RNA二级结构探测方法的研究进展[J]. 生物技术通报, 2023, 39(2): 51-62. |
[2] | 韩芳英, 胡昕, 王楠楠, 谢裕红, 王晓艳, 朱强. DREBs响应植物非生物逆境胁迫研究进展[J]. 生物技术通报, 2023, 39(11): 86-98. |
[3] | 葛雯冬, 王腾辉, 马天意, 范震宇, 王玉书. 结球甘蓝PRX基因家族全基因组鉴定与逆境条件下的表达分析[J]. 生物技术通报, 2023, 39(11): 252-260. |
[4] | 李萍, 郭发平, 田敏, 税阳, 徐娜娜, 白大嵩, 余德金, 张杰, 胡运高, 彭友林. 甾醇在调节植物生长发育中的研究进展[J]. 生物技术通报, 2022, 38(7): 90-98. |
[5] | 林科运, 段钰晶, 王高升, 孙念礼, 方玉洁, 王幼平. 甘蓝型油菜BnNF-YA1的克隆和功能鉴定[J]. 生物技术通报, 2022, 38(4): 106-116. |
[6] | 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2022, 38(12): 11-26. |
[7] | 汤晓丽, 姜福东, 张洪霞. 植物SINA E3泛素连接酶功能的研究进展[J]. 生物技术通报, 2022, 38(10): 10-17. |
[8] | 山琦, 贾惠舒, 姚文博, 刘伟灿, 李海燕. 植物miR396-GRF模块的生物学功能及其潜在应用价值[J]. 生物技术通报, 2022, 38(10): 34-44. |
[9] | 李舒文, 李殷睿智, 董笛, 王梦迪, 晁跃辉, 韩烈保. 蒺藜苜蓿MtSAG113基因的转化及表达特征分析[J]. 生物技术通报, 2022, 38(1): 108-114. |
[10] | 张凤, 陈伟. 代谢组学在植物逆境生物学中的研究进展[J]. 生物技术通报, 2021, 37(8): 1-11. |
[11] | 梁振霆, 唐婷. 内生菌对植物次生代谢产物的生物合成影响和抗逆功能研究[J]. 生物技术通报, 2021, 37(8): 35-45. |
[12] | 吕燕, 刘建利, 李靖宇, 候琳琳, 孙敏, 苟琪. 不同品种和产区宁夏枸杞根系AMF多样性[J]. 生物技术通报, 2021, 37(6): 36-48. |
[13] | 吕燕, 王文彬, 苟琪, 王英娜, 李靖宇, 刘建利. 根腐病对宁夏枸杞根区土壤丛枝菌根真菌群落的影响[J]. 生物技术通报, 2021, 37(12): 29-40. |
[14] | 武欢, 卢珍红, 郝向阳, 王斌, 焦元辰, 杨春梅, 程春振. 非洲菊GjMnSOD基因的克隆及表达分析[J]. 生物技术通报, 2021, 37(10): 17-25. |
[15] | 杨锐佳, 张中保, 吴忠义. 植物转录因子TIFY家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2020, 36(12): 121-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||