生物技术通报 ›› 2024, Vol. 40 ›› Issue (6): 95-104.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1199
蔡志成(), 王媛媛, 桑晓涵, 曾丽仙, 邓文韬, 王佳媚()
收稿日期:
2023-12-21
出版日期:
2024-06-26
发布日期:
2024-05-14
通讯作者:
王佳媚,女,博士,教授,研究方向:水产品加工与贮藏;E-mail: 992918@hainanu.edu.cn作者简介:
蔡志成,男,硕士研究生,研究方向:水产品加工与贮藏;E-mail: czc@hainanu.edu.cn
基金资助:
CAI Zhi-cheng(), WANG Yuan-yuan, SANG Xiao-han, ZENG Li-xian, DENG Wen-tao, WANG Jia-mei()
Received:
2023-12-21
Published:
2024-06-26
Online:
2024-05-14
摘要:
细菌通过群体感应(QS)分泌信号分子和细胞外聚合物(EPS),使细菌聚集和黏附到生物和非生物表面,在一定条件下形成抗性强、危害性大的生物被膜。目前,生物被膜在医疗、食品和农业等领域中的危害日益严重。尤其是一些致病菌不仅对人类健康构成威胁,甚至会造成较大的社会经济损失。一些传统消毒、杀菌方法难以将其彻底清除,且存在二次污染风险。生物被膜在不同介质表面的强黏附性是其难以被清除的主要原因之一。因此,采用高活性的溶液进行浸泡、清洗是去除生物被膜的有效策略。低温等离子体活化水中的活性氧(ROS)和活性氮(RNS)能破坏细菌的细胞壁、肽聚糖结构,有效抑制微生物黏附和聚集。低温等离子体活化水作为一种高效消毒抑菌溶液,被广泛应用于生物医学、食品去污和种子萌发领域。但低温等离子体活化水中活性物质易消散,难以长期贮藏,导致其抑菌性能减弱。近年来,通过向低温等离子体活化水中添加不同介质或联合其他技术制备的低温等离子体活化溶液,有效延长了活性物质的衰退,使其逐渐成为消毒、抑菌研究的新方向。本文综述了低温等离子体活化水和低温等离子体活化溶液的杀菌作用机理及其对生物被膜的清除效果,重点介绍了生物被膜的形成过程。旨在为环境、医疗及食品行业的生物被膜清除和控制提供理论参考。
蔡志成, 王媛媛, 桑晓涵, 曾丽仙, 邓文韬, 王佳媚. 低温等离子体活化溶液在抑菌及清除生物被膜中的研究进展[J]. 生物技术通报, 2024, 40(6): 95-104.
CAI Zhi-cheng, WANG Yuan-yuan, SANG Xiao-han, ZENG Li-xian, DENG Wen-tao, WANG Jia-mei. Research Progress of Cold Plasma Activated Solution in Antibacteria and Removing Biofilm[J]. Biotechnology Bulletin, 2024, 40(6): 95-104.
细 菌 Bacteria | 信号分子 Signal molecule | 功能 Function | 文献 Reference |
---|---|---|---|
铜绿假单胞菌 Pseudomonas aeruginosa | 喹诺酮(PQS)、2-(2-羟基苯基)-噻唑-4-甲醛(IQS) | 调控毒力、增加感染 | [ |
蜡状芽孢杆菌 Bacillus cereus | 顺式-2-不饱和脂肪酸(DSFs)、二酮哌嗪(DKPs) | 调控生物被膜形成 | [ |
沙门氏菌 Salmonella | 自诱导物-3(AI-3) | 参与致病过程 | [ |
大肠杆菌O157:H7 Escherichia coli O157:H7 | 肾上腺素衍生物 | 促进毒力因子和生物的生成 | [ |
青枯病菌 Ralstonia solancearum | 3-羟基-棕榈酸甲酯(3-OH-PAME) | 诱导毒力因子生成 | [ |
表1 参与生物被膜形成的其他信号分子
Table 1 Other signaling molecules involved in biofilm formation
细 菌 Bacteria | 信号分子 Signal molecule | 功能 Function | 文献 Reference |
---|---|---|---|
铜绿假单胞菌 Pseudomonas aeruginosa | 喹诺酮(PQS)、2-(2-羟基苯基)-噻唑-4-甲醛(IQS) | 调控毒力、增加感染 | [ |
蜡状芽孢杆菌 Bacillus cereus | 顺式-2-不饱和脂肪酸(DSFs)、二酮哌嗪(DKPs) | 调控生物被膜形成 | [ |
沙门氏菌 Salmonella | 自诱导物-3(AI-3) | 参与致病过程 | [ |
大肠杆菌O157:H7 Escherichia coli O157:H7 | 肾上腺素衍生物 | 促进毒力因子和生物的生成 | [ |
青枯病菌 Ralstonia solancearum | 3-羟基-棕榈酸甲酯(3-OH-PAME) | 诱导毒力因子生成 | [ |
[1] |
Vidyadharani G, Vijaya Bhavadharani HK, Sathishnath P, et al. Present and pioneer methods of early detection of food borne pathogens[J]. J Food Sci Technol, 2022, 59(6): 2087-2107.
doi: 10.1007/s13197-021-05130-4 pmid: 35602455 |
[2] | Singh A, Amod A, Pandey P, et al. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies[J]. Biomed Mater, 2022, 17(2): 022003. |
[3] | Han JH, Luo J, Du ZY, et al. Synergistic effects of baicalin and levofloxacin against hypervirulent Klebsiella pneumoniae biofilm in vitro[J]. Curr Microbiol, 2023, 80(4): 126. |
[4] | Smitran A, Lukovic B, Bozic L, et al. Carbapenem-resistant Acinetobacter baumannii: biofilm-associated genes, biofilm-eradication potential of disinfectants, and biofilm-inhibitory effects of selenium nanoparticles[J]. Microorganisms, 2023, 11(1): 171. |
[5] | Brooks JR, Chonko DJ, Pigott M, et al. Mapping bacterial biofilm on explanted orthopedic hardware: an analysis of 14 consecutive cases[J]. APMIS, 2023, 131(4): 170-179. |
[6] | Kim U, Kim JH, Oh SW. Review of multi-species biofilm formation from foodborne pathogens: multi-species biofilms and removal methodology[J]. Crit Rev Food Sci Nutr, 2022, 62(21): 5783-5793. |
[7] | Pang XY, Song XY, Chen MJ, et al. Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry[J]. Compr Rev Food Sci Food Saf, 2022, 21(2): 1657-1676. |
[8] | Suwannarat S, Thammaniphit C, Srisonphan S. Electrohydraulic streamer discharge plasma-enhanced Alternaria brassicicola disinfection in seed sterilization[J]. ACS Appl Mater Interfaces, 2021, 13(37): 43975-43983. |
[9] | Bradu C, Kutasi K, Magureanu M, et al. Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture[J]. J Phys D: Appl Phys, 2020, 53(22): 223001. |
[10] | Laurita R, Gozzi G, Tappi S, et al. Effect of plasma activated water(PAW)on rocket leaves decontamination and nutritional value[J]. Innov Food Sci Emerg Technol, 2021, 73: 102805. |
[11] | Zhao YM, Patange A, Sun DW, et al. Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry[J]. Compr Rev Food Sci Food Saf, 2020, 19(6): 3951-3979. |
[12] | Shah U, Wang QY, Kathariou S, et al. Optimization of plasma-activated water and validation of a potential surrogate for Salmonella for future egg washing processes[J]. J Food Prot, 2023, 86(1): 100029. |
[13] | 陈兆芳, 张维娜, 孟勇, 等. 植入物动物感染模型在葡萄球菌生物膜研究中的应用与进展[J]. 微生物学通报, 2022, 49(12): 5321-5330. |
Chen ZF, Zhang WN, Meng Y, et al. Application of foreign body infection models in the biofilm of Staphylococcus spp.: a review[J]. Microbiol China, 2022, 49(12): 5321-5330. | |
[14] | Yu JT, Wang F, Shen Y, et al. Inhibitory effect of ficin on Candida albicans biofilm formation and pre-formed biofilms[J]. BMC Oral Health, 2022, 22(1): 350. |
[15] | Long DR, Penewit K, Lo HY, et al. In vitro selection identifies Staphylococcus aureus genes influencing biofilm formation[J]. Infect Immun, 2023, 91(3): e0053822. |
[16] | Zhang XY, Zheng LP, Lu ZX, et al. Biochemical and molecular regulatory mechanism of the pgpH gene on biofilm formation in Listeria monocytogenes[J]. J Appl Microbiol, 2023, 134(2): lxac086. |
[17] | Pan M, Li HZ, Han XY, et al. Effects of hydrodynamic conditions on the composition, spatiotemporal distribution of different extracellular polymeric substances and the architecture of biofilms[J]. Chemosphere, 2022, 307(Pt 4): 135965. |
[18] | Carrascosa C, Raheem D, Ramos F, et al. Microbial biofilms in the food industry-a comprehensive review[J]. Int J Environ Res Public Health, 2021, 18(4): 2014. |
[19] | Li X, Qi H, Zhang XC, et al. Quantitative modeling of bacterial quorum sensing dynamics in time and space[J]. Chin Phys B, 2020, 29(10): 108702. |
[20] | Wu SB, Qiao JJ, Yang AD, et al. Potential of orthogonal and cross-talk quorum sensing for dynamic regulation in cocultivation[J]. Chem Eng J, 2022, 445: 136720. |
[21] | Wang YS, Bian ZR, Wang Y. Biofilm formation and inhibition mediated by bacterial quorum sensing[J]. Appl Microbiol Biotechnol, 2022, 106(19/20): 6365-6381. |
[22] | Bez C, Geller AM, Levy A, et al. Cell-cell signaling proteobacterial LuxR solos: a treasure trove of subgroups having different origins, ligands, and ecological roles[J]. mSystems, 2023, 8(2): e0103922. |
[23] | Wang JF, Liu QJ, Dong DY, et al. AHLs-mediated quorum sensing threshold and its response towards initial adhesion of wastewater biofilms[J]. Water Res, 2021, 194: 116925. |
[24] | 杨登辉, 孔里程, 孙建和, 等. 密度感应系统: 对细菌致病力的自行调控[J]. 微生物学通报, 2017, 44(12): 3007-3014. |
Yang DH, Kong LC, Sun JH, et al. Quorum sensing: an auto regulator for bacterial pathogenicity[J]. Microbiol China, 2017, 44(12): 3007-3014. | |
[25] | Xue BQ, Shen YM, Zuo J, et al. Bringing antimicrobial strategies to a new level: the quorum sensing system as a target to control Streptococcus suis[J]. Life, 2022, 12(12): 2006. |
[26] | 陈婧, 宋炳皞, 储琨, 等. 信号分子在生物脱氮中的作用及检测方法[J]. 微生物学通报, 2023, 50(5): 2249-2264. |
Chen J, Song BH, Chu K, et al. Role of signal molecules in biological nitrogen removal and detection methods[J]. Microbiol China, 2023, 50(5): 2249-2264. | |
[27] | Zhu XX, Chen WJ, Bhatt K, et al. Innovative microbial disease biocontrol strategies mediated by quorum quenching and their multifaceted applications: a review[J]. Front Plant Sci, 2023, 13: 1063393. |
[28] | Li WR, Zeng TH, Yao JW, et al. Diallyl sulfide from garlic suppresses quorum-sensing systems of Pseudomonas aeruginosa and enhances biosynthesis of three B vitamins through its thioether group[J]. Microb Biotechnol, 2021, 14(2): 677-691. |
[29] | Wang JH, Wang C, Yu HB, et al. Bacterial quorum-sensing signal IQS induces host cell apoptosis by targeting POT1-p53 signalling pathway[J]. Cell Microbiol, 2019, 21(10): e13076. |
[30] | Zhao LJ, Duan FX, Gong M, et al. (+)-terpinen-4-ol inhibits Bacillus cereus biofilm formation by upregulating the interspecies quorum sensing signals diketopiperazines and diffusing signaling factors[J]. J Agric Food Chem, 2021, 69(11): 3496-3510. |
[31] | Lucca V, Apellanis Borges K, Quedi Furian T, et al. Influence of the norepinephrine and medium acidification in the growth and adhesion of Salmonella Heidelberg isolated from poultry[J]. Microb Pathog, 2020, 138: 103799. |
[32] | Barrasso K, Watve S, Simpson CA, et al. Dual-function quorum-sensing systems in bacterial pathogens and symbionts[J]. PLoS Pathog, 2020, 16(10): e1008934. |
[33] | Ujita Y, Sakata M, Yoshihara A, et al. Signal production and response specificity in the phc quorum sensing systems of Ralstonia solanacearum species complex[J]. ACS Chem Biol, 2019, 14(10): 2243-2251. |
[34] | Cheah YT, Chan DJC. A methodological review on the characterization of microalgal biofilm and its extracellular polymeric substances[J]. J Appl Microbiol, 2022, 132(5): 3490-3514. |
[35] | Mahto KU, Kumari S, Das S. Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation[J]. Crit Rev Biochem Mol Biol, 2022, 57(3): 305-332. |
[36] | Campoccia D, Montanaro L, Arciola CR. Extracellular DNA(eDNA). A major ubiquitous element of the bacterial biofilm architecture[J]. Int J Mol Sci, 2021, 22(16): 9100. |
[37] | Li YR, Xing Z, Wang SC, et al. Disruption of biofilms in periodontal disease through the induction of phase transition by cationic dextrans[J]. Acta Biomater, 2023, 158: 759-768. |
[38] | Bisht K, Luecke AR, Wakeman CA. Temperature-specific adaptations and genetic requirements in a biofilm formed by Pseudomonas aeruginosa[J]. Front Microbiol, 2023, 13: 1032520. |
[39] | Huang L, Jin YN, Zhou DH, et al. A review of the role of extracellular polymeric substances(EPS)in wastewater treatment systems[J]. Int J Environ Res Public Health, 2022, 19(19): 12191. |
[40] |
Kaushik NK, Ghimire B, Li Y, et al. Biological and medical applications of plasma-activated media, water and solutions[J]. Biol Chem, 2018, 400(1): 39-62.
doi: 10.1515/hsz-2018-0226 pmid: 30044757 |
[41] | Cai ZC, Wang JM, Wang YY, et al. Effect of different process conditions on the physicochemical and antimicrobial properties of plasma-activated water[J]. Plasma Sci Technol, 2023, 25(12): 76-84. |
[42] | Cai ZC, Wang JM, Liu CC, et al. Effects of high voltage atmospheric cold plasma treatment on the number of microorganisms and the quality of Trachinotus ovatus during refrigerator storage[J]. Foods, 2022, 11(17): 2706. |
[43] | Stryczewska HD. Supply systems of non-thermal plasma reactors. construction review with examples of applications[J]. Appl Sci, 2020, 10(9): 3242. |
[44] | Milhan NVM, Chiappim W, Sampaio ADG, et al. Applications of plasma-activated water in dentistry: a review[J]. Int J Mol Sci, 2022, 23(8): 4131. |
[45] | 刘骁, 孟茜, 张明莉, 等. 等离子体活化水对腐败希瓦氏菌杀菌效果及机理[J]. 食品科学, 2023, 44(9): 25-31. |
Liu X, Meng X, Zhang ML, et al. Inactivation effect and mechanism of plasma activated water on Shewanella putrefaciens[J]. Food Sci, 2023, 44(9): 25-31. | |
[46] | Han QY, Wen X, Gao JY, et al. Application of plasma-activated water in the food industry: a review of recent research developments[J]. Food Chem, 2023, 405(Pt A): 134797. |
[47] | 赵电波, 王少丹, 郑凯茜, 等. 等离子体活化水-苯乳酸协同杀灭大肠杆菌O157: H7 作用及机制研究[J]. 食品工业科技, 2022, 43(14): 138-143. |
Zhao DB, Wang SD, Zheng KX, et al. Synergistic inactivation effects and mechanisms of plasma-activated water combined with phenyllactic acid against Escherichia coli O157: H7[J]. Sci Technol Food Ind, 2022, 43(14): 138-143. | |
[48] | Wu SJ, Zhang Q, Ma RN, et al. Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water[J]. Eur Phys J Spec Top, 2017, 226(13): 2887-2899. |
[49] | Liu ZC, Guo L, Liu DX, et al. Chemical kinetics and reactive species in normal saline activated by a surface air discharge[J]. Plasma Process Polym, 2017, 14(4/5): 1600113. |
[50] | Li YQ, Nie LL, Liu DW, et al. Plasma-activated chemical solutions and their bactericidal effects[J]. Plasma Process Polym, 2022, 19(11): 2100248. |
[51] | Liu CH, Chen C, Jiang AL, et al. Effects of plasma-activated water on microbial growth and storage quality of fresh-cut apple[J]. Innov Food Sci Emerg Technol, 2020, 59: 102256. |
[52] |
Kaushik NK, Bhartiya P, Kaushik N, et al. Nitric-oxide enriched plasma-activated water inactivates 229E coronavirus and alters antiviral response genes in human lung host cells[J]. Bioact Mater, 2023, 19: 569-580.
doi: 10.1016/j.bioactmat.2022.05.005 pmid: 35574062 |
[53] | Freyssenet C, Karlen S. Plasma-activated aerosolized hydrogen peroxide(aHP)in surface inactivation procedures[J]. Appl Biosaf, 2019, 24(1): 10-19. |
[54] | Qian J, Wang C, Zhuang H, et al. Evaluation of meat-quality and myofibrillar protein of chicken drumsticks treated with plasma-activated lactic acid as a novel sanitizer[J]. LWT, 2021, 138: 110642. |
[55] | Inguglia ES, Oliveira M, Burgess CM, et al. Plasma-activated water as an alternative nitrite source for the curing of beef jerky: influence on quality and inactivation of Listeria innocua[J]. Innov Food Sci Emerg Technol, 2020, 59: 102276. |
[56] | Ki SH, Noh H, Ahn GR, et al. Influence of nonthermal atmospheric plasma-activated water on the structural, optical, and biological properties of Aspergillus brasiliensis spores[J]. Appl Sci, 2020, 10(18): 6378. |
[57] | Lu JY, Hu XC, Ren LJ. Biofilm control strategies in food industry: inhibition and utilization[J]. Trends Food Sci Technol, 2022, 123: 103-113. |
[58] | Xu ZM, Zhou XX, Yang WS, et al. In vitro antimicrobial effects and mechanism of air plasma-activated water on Staphylococcus aureus biofilm[J]. Plasma Process Polym, 2020, 17(8): 1900270. |
[59] | Zhao JY, Qian J, Luo J, et al. Morphophysiological changes in Staphylococcus aureus biofilms treated with plasma-activated hydrogen peroxide solution[J]. Appl Sci, 2021, 11(24): 11597. |
[60] | Heng YP, Wang M, Jiang HW, et al. Plasma-activated acidic electrolyzed water: a new food disinfectant for bacterial suspension and biofilm[J]. Foods, 2022, 11(20): 3241. |
[61] | Seo H, Hong J, Kim T, et al. Super-antibiofilm effect of N2 plasma treated buffer(NPB)against plant pathogenic bacterium[J]. J Biol Eng, 2019, 13: 94. |
[62] |
张群霞, 方草, 杨春俊, 等. 低温等离子体激活过硫酸盐灭活红色毛癣菌生物膜[J]. 中国消毒学杂志, 2020, 37(1): 1-4.
doi: 10.11726/j.issn.1001-7658.2020.01.001 |
Zhang QX, Fang C, Yang CJ, et al. Low-temperature plasma-activated persulfate inactivates T. rubrum biofilm[J]. Chin J Disinfect, 2020, 37(1): 1-4. | |
[63] | Gao YW, Francis K, Zhang XH. Review on formation of cold plasma activated water(PAW)and the applications in food and agriculture[J]. Food Res Int, 2022, 157: 111246. |
[64] | Gu X, Huang D, Chen JH, et al. Bacterial inactivation and biofilm disruption through indigenous prophage activation using low-intensity cold atmospheric plasma[J]. Environ Sci Technol, 2022, 56(12): 8920-8931. |
[1] | 李慧, 文钰芳, 王悦, 纪超, 石国优, 罗英, 周勇, 李志敏, 吴晓玉, 杨有新, 刘建萍. 盐胁迫下辣椒CaPIF4的表达特性与功能分析[J]. 生物技术通报, 2024, 40(4): 148-158. |
[2] | 邹修为, 岳佳妮, 李志宇, 戴良英, 李魏. 水稻热激转录因子HsfA2b调控非生物胁迫抗性的功能分析[J]. 生物技术通报, 2024, 40(2): 90-98. |
[3] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[4] | 黄亚宁, 张海娇, 韩玉谦, 刘尊英. 超临界CO2与姜精油协同对副溶血弧菌杀菌效果的影响与机制研究[J]. 生物技术通报, 2023, 39(5): 297-305. |
[5] | 任思雨, 姜聪一, 于涛, 康瑞, 姜晓冰. agr系统在单核增生细胞李斯特菌耐药及生物被膜形成中的作用[J]. 生物技术通报, 2023, 39(2): 254-262. |
[6] | 周恒, 谢彦杰. 植物氧化胁迫信号应答的研究进展[J]. 生物技术通报, 2023, 39(11): 36-43. |
[7] | 赵佳, 赵飞燕, 沈馨, 高广琦, 孙志宏. 乳酸菌抗氧化活性及其应用研究进展[J]. 生物技术通报, 2023, 39(11): 182-190. |
[8] | 张玲, 张荣意, 刘盛科, 谭志琼. 瓜类细菌性果斑病菌拮抗细菌的筛选及其抑菌作用[J]. 生物技术通报, 2023, 39(1): 253-263. |
[9] | 石成龙, 汪锡武, 李安琪, 钱森和, 王洲, 赵世光, 刘艳, 薛正莲. ε-聚赖氨酸对阪崎克罗诺杆菌细胞结构与生物被膜形成的影响[J]. 生物技术通报, 2022, 38(9): 147-157. |
[10] | 徐红云, 张明意. GRAS转录因子AtSCL4负调控拟南芥应答渗透胁迫[J]. 生物技术通报, 2022, 38(6): 129-135. |
[11] | 李陆萍, 梁大成. 活性氧诱发的植物亚细胞间通讯[J]. 生物技术通报, 2021, 37(5): 165-173. |
[12] | 陆玉芳, 施卫明. 根际化学信号物质与土壤养分转化[J]. 生物技术通报, 2020, 36(9): 14-24. |
[13] | 鲁琳, 杨尚谕, 刘维东, 鲁黎明. 基于转录组测序花烟草响应盐胁迫活性氧清除相关基因的挖掘[J]. 生物技术通报, 2020, 36(12): 42-53. |
[14] | 李小艳, 李泽琦, 汪玉倩, 于晶, 林镇平, 林向民. 嗜水气单胞菌acrA缺失菌株的构建及其生理功能的测定[J]. 生物技术通报, 2020, 36(11): 63-69. |
[15] | 刘融, 崔凯, 白福恒, 刁其玉. 蛋氨酸调控畜禽氧化应激的研究进展[J]. 生物技术通报, 2020, 36(10): 207-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||