生物技术通报 ›› 2024, Vol. 40 ›› Issue (8): 118-128.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0177
邢丽南(), 张艳芳, 葛明然, 赵令敏, 陈妍, 霍秀文()
收稿日期:
2024-02-23
出版日期:
2024-08-26
发布日期:
2024-06-26
通讯作者:
霍秀文,女,博士,教授,博士生导师,研究方向:蔬菜种质资源与遗传育种;E-mail: huoxiuwen@imau.edu.cn作者简介:
邢丽南,女,博士研究生,研究方向:蔬菜种质资源与遗传育种;E-mail: 1760349574@qq.com
基金资助:
XING Li-nan(), ZHANG Yan-fang, GE Ming-ran, ZHAO Ling-min, CHEN Yan, HUO Xiu-wen()
Received:
2024-02-23
Published:
2024-08-26
Online:
2024-06-26
摘要:
【目的】WRKY作为植物特异型转录因子,参与植物生长发育过程。克隆山药DoWRKY40基因,分析其表达模式,通过酵母双杂交技术筛选与DoWRKY40互作的蛋白,探究WRKY40在山药膨大过程中的调控机制。【方法】以‘大和长芋’山药为材料克隆DoWRKY40基因,并进行生物信息学分析、表达模式分析、亚细胞定位,构建山药块茎不同发育时期酵母文库,筛选与DoWRKY40互作蛋白。【结果】DoWRKY40的开放阅读框长为927 bp。DoWRKY40蛋白属于WRKY家族的第II组,含有一个典型的WRKY转录因子保守结构域,定位于细胞核。与几内亚薯蓣亲缘关系较近。DoWRKY40基因在山药块茎生长发育的120 d表达量最高,且在叶、茎和块茎中均有表达,具有组织特异性。山药cDNA文库的库容量为1.484×108;pGBKT7-WRKY40诱饵载体无自激活活性。酵母双杂交法从山药文库中筛选到4类与DoWRKY40相互作用的蛋白,分别参与植物生长发育、细胞周期调节与细胞扩增、信号转导及环境胁迫应答等。【结论】克隆得到DoWRKY40基因,其响应山药的生长发育过程,筛选到的4类互作蛋白表明其在山药细胞膨大及信号转导中起调控作用。
邢丽南, 张艳芳, 葛明然, 赵令敏, 陈妍, 霍秀文. 山药DoWRKY40基因表达特征分析及互作蛋白筛选[J]. 生物技术通报, 2024, 40(8): 118-128.
XING Li-nan, ZHANG Yan-fang, GE Ming-ran, ZHAO Ling-min, CHEN Yan, HUO Xiu-wen. Analysis of DoWRKY40 Gene Expression Characteristics and Screening of Interacting Proteins in Yam[J]. Biotechnology Bulletin, 2024, 40(8): 118-128.
引物名称Primer name | 引物序列 Primer sequences(5'-3') | 引物用途Primer usage |
---|---|---|
WRKY40-F | TTCTTCTTCTTCTTCTTCTTCT | 已知序列验证Sequence verification |
WRKY40-R | AACATTCAAAAGTCTCCCCCA | |
WRKY40-qF | AATGGAGCAATCATCACTTA | RT-qPCR |
WRKY40-qR | AACATCTCACTCAATCTTTC | |
18S-F | CCATAAACGATGCCGACCAG | 18S rRNA |
18S-R | AGCCTTGCGACCATACTCCC | |
WRKY40-SF | CGGGGTACCATGGAATCAATAACAATGGAGC | 亚细胞定位Subcellular localization |
WRKY40-SR | GCGGATCCTATTTGGAGAAAAACTAAGAA | |
WRKY40-Y-F | GCGGATCCATGGAATCAATAACAATGGAGC | 诱饵载体构建Decoy vector construction |
WRKY40-Y-R | CTGCAGATTTGGAGAAAAACTAAGAATTTTT | |
3'AD | GTGAACTTGCGGGGTTTTTCAG | 酵母质粒PCR Yeast plasmid PCR |
5'AD | CTATTCGATGATGAAGATACCCC |
表1 WRKY40相关的引物序列
Table 1 Primer sequences related to WRKY40
引物名称Primer name | 引物序列 Primer sequences(5'-3') | 引物用途Primer usage |
---|---|---|
WRKY40-F | TTCTTCTTCTTCTTCTTCTTCT | 已知序列验证Sequence verification |
WRKY40-R | AACATTCAAAAGTCTCCCCCA | |
WRKY40-qF | AATGGAGCAATCATCACTTA | RT-qPCR |
WRKY40-qR | AACATCTCACTCAATCTTTC | |
18S-F | CCATAAACGATGCCGACCAG | 18S rRNA |
18S-R | AGCCTTGCGACCATACTCCC | |
WRKY40-SF | CGGGGTACCATGGAATCAATAACAATGGAGC | 亚细胞定位Subcellular localization |
WRKY40-SR | GCGGATCCTATTTGGAGAAAAACTAAGAA | |
WRKY40-Y-F | GCGGATCCATGGAATCAATAACAATGGAGC | 诱饵载体构建Decoy vector construction |
WRKY40-Y-R | CTGCAGATTTGGAGAAAAACTAAGAATTTTT | |
3'AD | GTGAACTTGCGGGGTTTTTCAG | 酵母质粒PCR Yeast plasmid PCR |
5'AD | CTATTCGATGATGAAGATACCCC |
软件 Software | 用途 Usage |
---|---|
NCBI ORF Finder | CDS序列分析 CDS sequence analysis |
Prot Param | 蛋白理化性质分析Analysis in physicochemical properties of coding protein |
TMHMM Server 2.0 | 跨膜结构域预测 Prediction of protein transmembrane domain |
SOPMA | 蛋白结构预测 Prediction of protein structure |
DNAMAN | 氨基酸序列比对 Alignment of amino acid sequences |
CDD | 保守结构域分析 Analysis of conservative domain |
NCBI Blast | 同源性搜索及比对Homology search and alignment of amino acid sequence |
MEGA 5.0 | 系统进化树的构建 Construction of phylogenetic tree |
表2 DoWRKY40生物信息学分析相关软件
Table 2 Related software for DoWRKY40 bioinformatics analysis
软件 Software | 用途 Usage |
---|---|
NCBI ORF Finder | CDS序列分析 CDS sequence analysis |
Prot Param | 蛋白理化性质分析Analysis in physicochemical properties of coding protein |
TMHMM Server 2.0 | 跨膜结构域预测 Prediction of protein transmembrane domain |
SOPMA | 蛋白结构预测 Prediction of protein structure |
DNAMAN | 氨基酸序列比对 Alignment of amino acid sequences |
CDD | 保守结构域分析 Analysis of conservative domain |
NCBI Blast | 同源性搜索及比对Homology search and alignment of amino acid sequence |
MEGA 5.0 | 系统进化树的构建 Construction of phylogenetic tree |
图1 山药RNA提取及DoWRKY40基因PCR A:RNA电泳检测图;B:DoWRKY40已知序列验证;M1:DL5000; M2:DL2000
Fig. 1 Extraction of RNA of yam and PCR of DoWRKY40 gene A: Photo of RNA electrophoresis detection; B: Verification of known DoWRKY40 sequences; M1: DL5000; M2: DL2000
图2 DoWRKY40的编码序列及推导的氨基酸序列 红色框:WRKY蛋白保守序列WRKYGQK;下划线:C2H2结构域;*:终止密码子
Fig. 2 Coding sequence and deduced amino acid sequence of DoWRKY40 Red box: WRKY protein conserved sequence WRKYGQK; underline: C2H2 domain; *: termination codon
图5 DoWRKY40在山药不同发育时期(A)和不同组织(B)中的表达模式
Fig. 5 Expression patterns of DoWRKY40 in different stages of yam tuber development(A)and different tissues of yam(B) ** P<0.01
图7 cDNA文库构建与鉴定 A:RNA电泳检测图;B:ds cDNA合成电泳检测图;C:均一化与去小片段电泳检测图;D:大肠杆菌菌落计数;E:24个单克隆插入片段的PCR鉴定;M1:DL5000 marker;1-24:挑取的24个克隆菌落PCR
Fig. 7 Construction of cDNA library and identification A: Photo of RNA electrophoresis detection. B: Photo of ds cDNA electrophoresis detection. C: Photo of homogenization and defragmentation electrophoresis detection. Escherichia coli colony count (D) and PCR identification of 24 monoclonal insertion fragments (E); M1: DL5000 marker. 1-24: Selected 24 cloned colonies PCR
图8 诱饵载体构建与菌落PCR鉴定 A:DoWRKY40质粒PCR图;1-2:PCR扩增产物;B:pGBKT7-DoWRKY40菌落PCR图;1-6:pGBKT7-DoWRKY40阳性克隆菌落PCR;M:DL5000 DNA marker
Fig. 8 Construction of bait vector and PCR identification of colony A: PCR of DoWRKY40 plasmid; 1-2: PCR amplification products; B: PCR of pGBKT7-DoWRKY40 colony; 1-6: PCR results of pGBKT7-DoWRKY40 positive clonal colony; M: DL5000 DNA marker
图10 cDNA文库筛选效率(A)、DoWRKY40互作蛋白筛选(B)及质粒PCR检测(C) B:1-22:筛选的阳性克隆编号;+:阳性对照;-:阴性对照;C:M1:DL5000 DNA marker;1-6:6个质粒PCR
Fig. 10 Efficiency of cDNA libary screening (A), DoWRKY40 interaction protein screening (B) and plasmid PCR detection (C) B: 1-22: Numbering of screened positive clones; +: positive control; -: negative control; C: M1: DL5000 DNA marker; 1-6: PCR results of 1-6 plasmid
序号 No. | NCBI比对结果 NCBI blast results | E-value | 相似度 Similarity/% | 登录号 Accession number | 克隆数 Clone count |
---|---|---|---|---|---|
1 | 转录因子EGL1 Transcription factor EGL1 | 0.0 | 93 | XM-039282616.1 | 1 |
2 | DNA结合蛋白BIN4 DNA-binding protein BIN4 | 0.0 | 94 | XM-039264312.1 | 3 |
3 | 蛋白磷酸酶2C Protein phosphatase 2C | 0.0 | 86 | XM-039277539.1 | 1 |
4 | BAG家族分子伴侣调控因子7 BAG family molecular chaperone regulator 7-like | 0.0 | 95 | XM-039266610.1 | 1 |
表3 DoWRKY40候选互作蛋白的BLAST分析结果
Table 3 BLAST analysis of candidate proteins interacted with DoWRKY40
序号 No. | NCBI比对结果 NCBI blast results | E-value | 相似度 Similarity/% | 登录号 Accession number | 克隆数 Clone count |
---|---|---|---|---|---|
1 | 转录因子EGL1 Transcription factor EGL1 | 0.0 | 93 | XM-039282616.1 | 1 |
2 | DNA结合蛋白BIN4 DNA-binding protein BIN4 | 0.0 | 94 | XM-039264312.1 | 3 |
3 | 蛋白磷酸酶2C Protein phosphatase 2C | 0.0 | 86 | XM-039277539.1 | 1 |
4 | BAG家族分子伴侣调控因子7 BAG family molecular chaperone regulator 7-like | 0.0 | 95 | XM-039266610.1 | 1 |
[1] | Shan N, Wang PT, Zhu QL, et al. Comprehensive characterization of yam tuber nutrition and medicinal quality of Dioscorea opposita and D. alata from different geographic groups in China[J]. J Integr Agric, 2020, 19(11): 2839-2848. |
[2] | Cao TX, Sun JY, Shan N, et al. Uncovering the genetic diversity of yams(Dioscorea spp.)in China by combining phenotypic trait and molecular marker analyses[J]. Ecol Evol, 2021, 11(15): 9970-9986. |
[3] | 陈妍, 张艳芳, 赵令敏, 等. 光照强度对山药光合特性的影响和Rubisco羧化酶基因的克隆及表达分析[J]. 植物生理学报, 2023, 59(6): 1169-1183. |
Chen Y, Zhang YF, Zhao LM, et al. Effects of light intensity on photosynthetic characteristics of yam(Dioscorea opposita)and cloning and expression analysis of Rubisco carboxylase gene[J]. Plant Physiol J, 2023, 59(6): 1169-1183. | |
[4] | 葛明然, 张艳芳, 邢丽南, 等. 山药(Dioscorea opposita Thunb.)赤霉素合成酶基因DoGA20ox1的克隆及功能研究[J]. 西北农业学报, 2023, 32(6): 919-928. |
Ge MR, Zhang YF, Xing LN, et al. Cloning and function of gibberell in synthase gene DoGA20ox1 in yam(Dioscorea opposita Thunb.)[J]. Acta Agric Boreali Occidentalis Sin, 2023, 32(6): 919-928. | |
[5] | Zhu H, Zhou YY, Zhai H, et al. A novel sweetpotato WRKY transcription factor, IbWRKY2, positively regulates drought and salt tolerance in transgenic Arabidopsis[J]. Biomolecules, 2020, 10(4): 506. |
[6] | Jang JY, Choi CH, Hwang DJ. The WRKY superfamily of rice transcription factors[J]. Plant Pathol J, 2010, 26(2): 110-114. |
[7] | McGregor C. Differential expression and detection of transcripts in sweetpotato(Ipomoea batatas(L.)Lam.)using cDNA microarrays[D]. Baton Rouge, USA: Louisiana State University Libraries, 2006. |
[8] | Yu YC, Hu RB, Wang HM, et al. MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering[J]. Plant Sci, 2013, 212: 1-9. |
[9] | 陈凤颖, 龙小琴, 聂聪, 等. 转录因子WRKY71对拟南芥根系发育的影响[J]. 植物生理学报, 2022, 58(2): 363-370. |
Chen FY, Long XQ, Nie C, et al. Effects of transcription factor WRKY71 on root development of Arabidopsis thaliana[J]. Plant Physiol J, 2022, 58(2): 363-370. | |
[10] | Huang Y, Feng CZ, Ye Q, et al. Correction: Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development[J]. PLoS Genet, 2019, 15(3): e1008032. |
[11] | 田媛, 郑锦城. 刺梨WRKY基因家族鉴定及其在不同组织中的表达分析[J]. 分子植物育种, 2024, 22(4): 1075-1085. |
Tian Y, Zheng JC. Identification and expression analysis in different tissues of WRKY transcription factors in Rosa roxburghii tratt[J]. Mol Plant Breed, 2024, 22(4): 1075-1085. | |
[12] |
Wang DJ, Wang L, Su WH, et al. A class III WRKY transcription factor in sugarcane was involved in biotic and abiotic stress responses[J]. Sci Rep, 2020, 10(1): 20964.
doi: 10.1038/s41598-020-78007-9 pmid: 33262418 |
[13] | Rosado D, Ackermann A, Spassibojko O, et al. WRKY transcription factors and ethylene signaling modify root growth during the shade-avoidance response[J]. Plant Physiol, 2022, 188(2): 1294-1311. |
[14] | Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and beta-amylase from sweet potato[J]. Mol Gen Genet, 1994, 244(6): 563-571. |
[15] |
Eulgem T, Rushton PJ, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000, 5(5): 199-206.
doi: 10.1016/s1360-1385(00)01600-9 pmid: 10785665 |
[16] | Wei W, Hu Y, Han YT, et al. The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: identification and expression analysis under biotic and abiotic stresses[J]. Plant Physiol Biochem, 2016, 105: 129-144. |
[17] | Jing ZB, Liu ZD. Genome-wide identification of WRKY transcription factors in kiwifruit(Actinidia spp.)and analysis of WRKY expression in responses to biotic and abiotic stresses[J]. Genes Genomics, 2018, 40(4): 429-446. |
[18] | Wu KL, Guo ZJ, Wang HH, et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins[J]. DNA Res, 2005, 12(1): 9-26. |
[19] | 向小华, 吴新儒, 晁江涛, 等. 普通烟草WRKY基因家族的鉴定及表达分析[J]. 遗传, 2016, 38(9): 840-862. |
Xiang XH, Wu XR, Chao JT, et al. Genome-wide identification and expression analysis of the WRKY gene family in common tobacco(Nicotiana tabacum L.)[J]. Hereditas, 2016, 38(9): 840-862. | |
[20] | Lei RH, Li XL, Ma ZB, et al. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function[J]. Plant J, 2017, 91(6): 962-976. |
[21] | Zhao WH, Li YH, Fan SZ, et al. The transcription factor WRKY32 affects tomato fruit color by regulating YELLOW FRUITED-TOMATO 1, a core component of ethylene signal transduction[J]. J Exp Bot, 2021, 72(12): 4269-4282. |
[22] | Zhang WW, Zhao SQ, Gu S, et al. FvWRKY48 binds to the pectate lyase FvPLA promoter to control fruit softening in Fragaria vesca[J]. Plant Physiol, 2022, 189(2): 1037-1049. |
[23] |
Li XY, Guo W, Li JC, et al. Histone acetylation at the promoter for the transcription factor PuWRKY31 affects sucrose accumulation in pear fruit[J]. Plant Physiol, 2020, 182(4): 2035-2046.
doi: 10.1104/pp.20.00002 pmid: 32047049 |
[24] | Li A, Chen J, Lin Q, et al. Transcription factor MdWRKY32 participates in starch-sugar metabolism by binding to the MdBam5 promoter in apples during postharvest storage[J]. J Agric Food Chem, 2021, 69(49): 14906-14914. |
[25] | 李欣容. 地黄WRKY家族基因鉴定及其在调控毛蕊花糖苷合成中的功能研究[D]. 郑州: 河南农业大学, 2021. |
Li XR. Screening of WRKY family form Rehmannia glutinosa and their function in the biosynthesis of acteoside[D]. Zhengzhou: Henan Agricultural University, 2021. | |
[26] | 张子轩. 萝卜黑色根皮花青素合成分子调控机制研究及相关基因克隆[D]. 太谷: 山西农业大学, 2022. |
Zhang ZX. Molecular regulation mechanism and cloning related genes of anthocyanin synthesis in black root skin of radish[D]. Taigu: Shanxi Agricultural University, 2022. | |
[27] |
赵孟良, 郭怡婷, 任延靖. 菊芋WRKY转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(2): 116-125.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0551 |
Zhao ML, Guo YT, Ren YJ. Identification and analysis of WRKY transcription factor family genes in Helianthus tuberosus[J]. Biotechnol Bull, 2023, 39(2): 116-125. | |
[28] | 赵令敏, 张艳芳, 邢丽南, 等. 山药异淀粉酶基因克隆及其在淀粉代谢中的作用[J]. 西北植物学报, 2022, 42(11): 1827-1834. |
Zhao LM, Zhang YF, Xing LN, et al. Cloning of isoamylase gene in yam and its role in starch metabolism[J]. Acta Bot Boreali Occidentalia Sin, 2022, 42(11): 1827-1834. | |
[29] |
俞沁含, 李俊铎, 崔莹, 等. 山葡萄转录因子VaMYB4a互作蛋白的筛选与鉴定[J]. 园艺学报, 2023, 50(3): 508-522.
doi: 10.16420/j.issn.0513-353x.2021-1219 |
Yu QH, Li JD, Cui Y, et al. Screening and identification of interacting protein of VaMYB4a from Vitis amurensis[J]. Acta Hortic Sin, 2023, 50(3): 508-522. | |
[30] |
林胜男, 刘杰玮, 张晓妮, 等. 香石竹WRKY家族全基因组鉴定及其表达分析[J]. 园艺学报, 2021, 48(9): 1768-1784.
doi: 10.16420/j.issn.0513-353x.2019-0986 |
Lin SN, Liu JW, Zhang XN, et al. Genome-wide identification and expression analysis of WRKY gene family in Dianthus caryophyllus[J]. Acta Hortic Sin, 2021, 48(9): 1768-1784. | |
[31] | 任永娟, 王东姣, 苏亚春, 等. 植物WRKY转录因子: 结构、分类、进化和功能[J]. 农业生物技术学报, 2021, 29(1): 105-124. |
Ren YJ, Wang DJ, Su YC, et al. Structure, classification, evolution and function of plant WRKY transcription factors[J]. J Agric Biotechnol, 2021, 29(1): 105-124. | |
[32] | 蒋小刚. 甘蓝型油菜MADS-box基因家族鉴定及裂角调控网络初步分析[D]. 武汉: 华中农业大学, 2019. |
Jiang XG. Identification of MADS-box gene family in Brassica napus L. and preliminary analysis of regulation network of pod dehiscence[D]. Wuhan: Huazhong Agricultural University, 2019. | |
[33] | Liu J, Wang XY, Chen YL, et al. Identification, evolution and expression analysis of WRKY gene family in Eucommia ulmoides[J]. Genomics, 2021, 113(5): 3294-3309. |
[34] | 刘世芳, 刘霞宇, 张洁, 等. 甘薯IbWRKY75的克隆、亚细胞定位及表达特性分析[J]. 植物生理学报, 2020, 56(5): 969-980. |
Liu SF, Liu XY, Zhang J, et al. Cloning, subcellular localization and expression analysis of IbWRKY75 in Ipomoea batatas[J]. Plant Physiol J, 2020, 56(5): 969-980. | |
[35] | Tiika RJ, Wei J, Ma R, et al. Identification and expression analysis of the WRKY gene family during different developmental stages in Lycium ruthenicum Murr. fruit[J]. PeerJ, 2020, 8: e10207. |
[36] | Xue CL, Li HT, Liu ZG, et al. Genome-wide analysis of the WRKY gene family and their positive responses to phytoplasma invasion in Chinese jujube[J]. BMC Genomics, 2019, 20(1): 464. |
[37] | Chen CH, Chen XQ, Han J, et al. Genome-wide analysis of the WRKY gene family in the cucumber genome and transcriptome-wide identification of WRKY transcription factors that respond to biotic and abiotic stresses[J]. BMC Plant Biol, 2020, 20(1): 443. |
[38] | Xu M, Wu C, Zhao LM, et al. WRKY transcription factor OpWRKY1 acts as a negative regulator of camptothecin biosynthesis in Ophiorrhiza pumila hairy roots[J]. Plant Cell Tissue Organ Cult, 2020, 142(1): 69-78. |
[39] | 冯俊杰, 王远达, 邓琴霖, 等. 芥菜BjuWRKY75基因表达及其与开花整合子BjuFT互作[J]. 生物工程学报, 2022, 38(8): 3029-3040. |
Feng JJ, Wang YD, Deng QL, et al. Expression of Brassica juncea BjuWRKY75 and its interactions with flowering integrator BjuFT[J]. Chin J Biotechnol, 2022, 38(8): 3029-3040. | |
[40] | Zhang ZL, Xie Z, Zou XL, et al. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells[J]. Plant Physiol, 2004, 134(4): 1500-1513. |
[41] | 张天亮. MdMYB 111和MdWRKY40参与红肉苹果花青苷生物合成的分子机制[D]. 泰安: 山东农业大学, 2020. |
Zhang TL. Molecular mechanism of MdMYB111 and MdWRKY40 involved in anthocyanin biosynthesis in red- fleshed apple[D]. Tai'an: Shandong Agricultural University, 2020. | |
[42] | Wang TJ, Huang SZ, Zhang A, et al. JMJ17-WRKY40 and HY5-ABI5 modules regulate the expression of ABA-responsive genes in Arabidopsis[J]. New Phytol, 2021, 230(2): 567-584. |
[43] | Ahmad R, Liu YT, Wang TJ, et al. GOLDEN2-LIKE transcription factors regulate WRKY40 expression in response to abscisic acid[J]. Plant Physiol, 2019, 179(4): 1844-1860. |
[44] |
Van Aken O, Zhang BT, Law S, et al. AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins[J]. Plant Physiol, 2013, 162(1): 254-271.
doi: 10.1104/pp.113.215996 pmid: 23509177 |
[45] |
Wu SC, Blumer JM, Darvill AG, et al. Characterization of an endo-beta-1, 4-glucanase gene induced by auxin in elongating pea epicotyls[J]. Plant Physiol, 1996, 110(1): 163-170.
doi: 10.1104/pp.110.1.163 pmid: 8587980 |
[46] |
Szyjanowicz PMJ, McKinnon I, Taylor NG, et al. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana[J]. Plant J, 2004, 37(5): 730-740.
doi: 10.1111/j.1365-313x.2003.02000.x pmid: 14871312 |
[47] | Li H, Ye KY, Shi YT, et al. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis[J]. Mol Plant, 2017, 10(4): 545-559. |
[48] |
Merlot S, Gosti F, Guerrier D, et al. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway[J]. Plant J, 2001, 25(3): 295-303.
pmid: 11208021 |
[49] |
Doukhanina EV, Chen SR, van der Zalm E, et al. Identification and functional characterization of the BAG protein family in Arabidopsis thaliana[J]. J Biol Chem, 2006, 281(27): 18793-18801.
doi: 10.1074/jbc.M511794200 pmid: 16636050 |
[1] | 林彤, 袁程, 董陈文华, 曾孟琼, 杨燕, 毛自朝, 林春. 藜麦配子发育相关基因CqSTK的筛选及功能分析[J]. 生物技术通报, 2024, 40(8): 83-94. |
[2] | 李博静, 郑腊梅, 吴乌云, 高飞, 周宜君. 西蒙得木HSP20基因家族的进化、表达和功能分析[J]. 生物技术通报, 2024, 40(6): 190-202. |
[3] | 吴泽航, 杨中义, 鄢毅铖, 贾永红, 吴月燕, 谢晓鸿. 比利时杜鹃花类黄酮3'-羟化酶(F3'H)基因克隆及功能分析[J]. 生物技术通报, 2024, 40(6): 251-259. |
[4] | 王秋月, 段鹏亮, 李海笑, 刘宁, 曹志艳, 董金皋. 玉米大斑病菌cDNA文库的构建及转录因子StMR1互作蛋白的筛选[J]. 生物技术通报, 2024, 40(6): 281-289. |
[5] | 闫欢欢, 尚怡彤, 王丽红, 田学琴, 廖海艳, 曾斌, 胡志宏. 米曲霉异源表达合成虫草素[J]. 生物技术通报, 2024, 40(6): 290-298. |
[6] | 潘萍萍, 徐志浩, 张怡雯, 李青, 王忠华. 多花黄精查尔酮合酶PcCHS的原核表达、亚细胞定位及表达分析[J]. 生物技术通报, 2024, 40(5): 280-289. |
[7] | 张震, 李清, 徐菁, 陈凯园, 张春芝, 祝光涛. 马铃薯线粒体靶向表达载体的构建与应用[J]. 生物技术通报, 2024, 40(5): 66-73. |
[8] | 杨艳, 胡洋, 刘霓如, 殷璐, 杨锐, 王鹏飞, 穆霄鹏, 张帅, 程春振, 张建成. ‘红满堂’苹果MbbZIP43基因的克隆与功能研究[J]. 生物技术通报, 2024, 40(2): 146-159. |
[9] | 辛奇, 李压凡, 尹铮, 张晓丹, 陈霆, 刘晓华. 甘蔗CBL-CIPK基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(2): 197-211. |
[10] | 任延靖, 张鲁刚, 赵孟良, 李江, 邵登魁. 白菜种子cDNA酵母文库的构建及BrTTG1互作蛋白的筛选及分析[J]. 生物技术通报, 2024, 40(2): 223-232. |
[11] | 朱毅, 柳唐镜, 宫国义, 张洁, 王晋芳, 张海英. 西瓜ClPP2C3克隆及表达分析[J]. 生物技术通报, 2024, 40(1): 243-249. |
[12] | 谢宏, 周丽莹, 李舒文, 王梦迪, 艾晔, 晁跃辉. 蒺藜苜蓿MtCIM基因结构和功能分析[J]. 生物技术通报, 2024, 40(1): 262-269. |
[13] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[14] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[15] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||