生物技术通报 ›› 2025, Vol. 41 ›› Issue (2): 234-247.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0642
• 研究报告 • 上一篇
钱政毅(), 吴绍芳, 曹舒怡, 宋雅欣, 潘鑫峰, 李兆伟, 范凯(
)
收稿日期:
2024-07-07
出版日期:
2025-02-26
发布日期:
2025-02-28
通讯作者:
范凯,男,博士,副教授,研究方向 :植物抗性生物学;E-mail: fankai@fafu.edu.cn作者简介:
钱政毅,男,硕士研究生,研究方向 :植物抗性生物学;E-mail: 724066248@qq.com
基金资助:
QIAN Zheng-yi(), WU Shao-fang, CAO Shu-yi, SONG Ya-xin, PAN Xin-feng, LI Zhao-wei, FAN Kai(
)
Received:
2024-07-07
Published:
2025-02-26
Online:
2025-02-28
摘要:
目的 从睡莲基因组中鉴定NAC成员,并对其进化历程以及在不同组织和ABA胁迫下的表达模式进行分析,为睡莲NAC家族的分子进化提供理论基础,同时为睡莲NAC成员调控花器官形态建成和响应逆境胁迫提供候选基因。 方法 利用全基因组方法分析睡莲NAC家族成员的保守基序、基因结构、系统进化、染色体定位、基因复制事件、启动子顺式调控元件,并使用转录组和RT-qPCR对睡莲NAC家族成员在不同组织和ABA胁迫下的表达模式进行分析。 结果 从睡莲基因组中筛选出64个NAC成员,可分为15个亚家族。NcNAC成员不均匀地分布在睡莲14条染色体上,大部分成员定位于1、2、9和11号染色体上。睡莲NAC家族的片段复制事件与睡莲NAC家族的扩增紧密联系。NcNAC11、NcNAC43、NcNAC36和NcNAC52在花器官间的表达量较高,推断这些基因可能参与睡莲花器官的形态建成。NcNAC成员启动子区含有大量与胁迫响应相关的顺式调控元件,其中启动子区含有ABA响应元件最多的NcNAC07、NcNAC08、NcNAC34和NcNAC43能够响应ABA胁迫,表明NcNAC07、NcNAC08、NcNAC34和NcNAC43可能与睡莲的抗逆胁迫有关。 结论 在睡莲中有64个NcNAC成员,可以将其分为15个亚家族,NcNAC11、NcNAC43、NcNAC36和NcNAC52在花器官中的表达量较高,NcNAC07、NcNAC08、NcNAC34和NcNAC43能够响应ABA胁迫。
钱政毅, 吴绍芳, 曹舒怡, 宋雅欣, 潘鑫峰, 李兆伟, 范凯. 睡莲NAC转录因子的鉴定及其表达分析[J]. 生物技术通报, 2025, 41(2): 234-247.
QIAN Zheng-yi, WU Shao-fang, CAO Shu-yi, SONG Ya-xin, PAN Xin-feng, LI Zhao-wei, FAN Kai. Identification of the NAC Transcription Factors in Nymphaea colorata and Their Expression Analysis[J]. Biotechnology Bulletin, 2025, 41(2): 234-247.
基因名称Gene name | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
---|---|---|
NcUbi | CCTGTATTGCCTGATG | GACGAGATGGTGGAGT |
NcNAC11 | CGGTGTTGACAAGACGGAGA | CGTCCTCTTCGATGGTAGGC |
NcNAC07 | CAGGAGAGGGAAGCACAAGG | GTTGCCGAAGACAAAGCCAG |
NcNAC08 | GCTTCAGGTTCCATCCGACA | TTGGCACTGAAATTGGCTGC |
NcNAC33 | GGATGAGTACCGTCTCGCAG | CGTCCAAGTCGTCCAGTGAA |
NcNAC34 | TCCGGTTACTGGAAAGCCAC | ACTCGTGCATGATCCAGTCC |
NcNAC36 | CCTACAGCTGCACCCTTCAA | GGTGATCTATCAGTGCCGGG |
NcNAC43 | GGTGACAGCAGGAACGAAGA | CGCTGGTGATGATGCTTTCG |
NcNAC52 | ACTCTACCTGCATCGGTCCT | GGGATGAATGTGAAGGGGCA |
NcNAC56 | ATTTGCCTGGTGATGGGGAG | ACAACTTGGTTGCACCTGGA |
表1 本试验使用的RT-qPCR引物序列
Table 1 Primer sequences of RT-qPCR in this study
基因名称Gene name | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
---|---|---|
NcUbi | CCTGTATTGCCTGATG | GACGAGATGGTGGAGT |
NcNAC11 | CGGTGTTGACAAGACGGAGA | CGTCCTCTTCGATGGTAGGC |
NcNAC07 | CAGGAGAGGGAAGCACAAGG | GTTGCCGAAGACAAAGCCAG |
NcNAC08 | GCTTCAGGTTCCATCCGACA | TTGGCACTGAAATTGGCTGC |
NcNAC33 | GGATGAGTACCGTCTCGCAG | CGTCCAAGTCGTCCAGTGAA |
NcNAC34 | TCCGGTTACTGGAAAGCCAC | ACTCGTGCATGATCCAGTCC |
NcNAC36 | CCTACAGCTGCACCCTTCAA | GGTGATCTATCAGTGCCGGG |
NcNAC43 | GGTGACAGCAGGAACGAAGA | CGCTGGTGATGATGCTTTCG |
NcNAC52 | ACTCTACCTGCATCGGTCCT | GGGATGAATGTGAAGGGGCA |
NcNAC56 | ATTTGCCTGGTGATGGGGAG | ACAACTTGGTTGCACCTGGA |
图2 睡莲中NAC家族进化分析(A)及其保守基序(B)与基因结构(C)的分布
Fig. 2 Phylogenetic analysis (A) and distribution of conserved motif (B) and gene structure (C) in the NAC family of N. colorata
图4 睡莲NAC复制基因的共线性分析和Ks分布A:NcNAC复制基因的共线性分析;B:NcNAC复制基因的亚家族分布;C:NcNAC复制基因的Ks分布,箭头所指为Ks峰值
Fig. 4 Syntenic analysis and Ks distribution of the duplicated NAC members in N. colorataA: Syntenic analysis of the duplicated NcNACs. B: Subfamily distribution of the duplicated NcNACs. C: Ks distribution of the duplicated NcNACs, and the arrow points to peak value of Ks
图7 利用RT-qPCR方法分析不同组织中NcNAC成员的表达模式不同字母表示不同处理间在0.05水平差异显著。下同
Fig. 7 Expression profiles of NcNAC members in different tissues by RT-qPCR methodDifferent letters indicate the significant differences among different treatments at the 0.05 level. The same below
1 | 刘子毓, 杨光穗, 奚良, 等. 睡莲研究现状及展望 [J]. 热带农业科学, 2023, 43(1): 38-43. |
Liu ZY, Yang GS, Xi L, et al. The present situation and prospect of water lily research [J]. Chin J Trop Agric, 2023, 43(1): 38-43. | |
2 | 马雪祺, 阴艳红, 冯婧娴, 等. 植物NAC转录因子研究进展 [J]. 植物生理学报, 2021, 57(12): 2225-2234. |
Ma XQ, Yin YH, Feng JX, et al. Research progress of NAC transcription factors in plant [J]. Plant Physiol J, 2021, 57(12): 2225-2234. | |
3 | Xiang Y, Sun XJ, Bian XL, et al. The transcription factor ZmNAC49 reduces stomatal density and improves drought tolerance in maize [J]. J Exp Bot, 2021, 72(4): 1399-1410. |
4 | Mao HD, Li SM, Chen B, et al. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat [J]. Mol Plant, 2022, 15(2): 276-292. |
5 | Han GH, Huang RN, Hong LH, et al. The transcription factor NAC102 confers cadmium tolerance by regulating WAKL11 expression and cell wall pectin metabolism in Arabidopsis [J]. J Integr Plant Biol, 2023, 65(10): 2262-2278. |
6 | Souer E, van Houwelingen A, Kloos D, et al. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries [J]. Cell, 1996, 85(2): 159-170. |
7 | Olsen AN, Ernst HA, Leggio LL, et al. NAC transcription factors: structurally distinct, functionally diverse [J]. Trends Plant Sci, 2005, 10(2): 79-87. |
8 | Han KJ, Zhao Y, Sun YH, et al. NACs, generalist in plant life [J]. Plant Biotechnol J, 2023, 21(12): 2433-2457. |
9 | Ko JH, Yang SH, Park AH, et al. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana [J]. Plant J, 2007, 50(6): 1035-1048. |
10 | Mao CJ, He JM, Liu LN, et al. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development [J]. Plant Biotechnol J, 2020, 18(2): 429-442. |
11 | Matallana-Ramirez LP, Rauf M, Farage-Barhom S, et al. NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis [J]. Mol Plant, 2013, 6(5): 1438-1452. |
12 | Aida M, Ishida T, Fukaki H, et al. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant [J]. Plant Cell, 1997, 9(6): 841-857. |
13 | Mitsuda N, Iwase A, Yamamoto H, et al. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis [J]. Plant Cell, 2007, 19(1): 270-280. |
14 | Chen X, Lu SC, Wang YF, et al. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice [J]. Plant J, 2015, 82(2): 302-314. |
15 | Ma NN, Zuo YQ, Liang XQ, et al. The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato [J]. Physiol Plant, 2013, 149(4): 474-486. |
16 | Selth LA, Dogra SC, Rasheed MS, et al. A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication [J]. Plant Cell, 2005, 17(1): 311-325. |
17 | He X, Zhu LF, Xu L, et al. GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks [J]. Plant Cell Rep, 2016, 35(10): 2167-2179. |
18 | Yoshida T, Mogami J, Yamaguchi-Shinozaki K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants [J]. Curr Opin Plant Biol, 2014, 21: 133-139. |
19 | Sakuraba Y, Kim YS, Han SH, et al. The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP [J]. Plant Cell, 2015, 27(6): 1771-1787. |
20 | Wang J, Zheng CF, Shao XQ, et al. Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SlNAP1 in the growth and defense response of tomato [J]. Hortic Res, 2020, 7(1): 209. |
21 | Hong YB, Zhang HJ, Huang L, et al. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice [J]. Front Plant Sci, 2016, 7: 4. |
22 | Jensen MK, Hagedorn PH, De Torres-Zabala M, et al. Transcriptional regulation by an NAC (NAM-ATAF1, 2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis [J]. Plant J, 2008, 56(6): 867-880. |
23 | Fang YJ, You J, Xie KB, et al. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice [J]. Mol Genet Genomics, 2008, 280(6): 547-563. |
24 | Shen SY, Zhang QR, Shi Y, et al. Genome-wide analysis of the NAC domain transcription factor gene family in Theobroma cacao [J]. Genes, 2019, 11(1): 35. |
25 | Shan XM, Yang KB, Xu XR, et al. Genome-wide investigation of the NAC gene family and its potential association with the secondary cell wall in moso bamboo [J]. Biomolecules, 2019, 9(10): 609. |
26 | Liu MY, Ma ZT, Sun WJ, et al. Genome-wide analysis of the NAC transcription factor family in Tartary buckwheat (Fagopyrum tataricum) [J]. BMC Genomics, 2019, 20(1): 113. |
27 | Jin JF, Wang ZQ, He QY, et al. Genome-wide identification and expression analysis of the NAC transcription factor family in tomato (Solanum lycopersicum) during aluminum stress [J]. BMC Genomics, 2020, 21(1): 288. |
28 | Li B, Fan RY, Yang QS, et al. Genome-wide identification and characterization of the NAC transcription factor family in Musa acuminata and expression analysis during fruit ripening [J]. Int J Mol Sci, 2020, 21(2): 634. |
29 | Zhang LS, Chen F, Zhang XT, et al. The water lily genome and the early evolution of flowering plants [J]. Nature, 2020, 577(7788): 79-84. |
30 | Chen CJ, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194-1202. |
31 | Pertea M, Kim D, Pertea GM, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown [J]. Nat Protoc, 2016, 11(9): 1650-1667. |
32 | Su Q, Wang HY, Tian M, et al. Transcriptomic insight into viviparous growth in water lily [J]. Biomed Res Int, 2022, 2022: 8445484. |
33 | Nuruzzaman M, Manimekalai R, Sharoni AM, et al. Genome-wide analysis of NAC transcription factor family in rice [J]. Gene, 2010, 465(1/2): 30-44. |
34 | Xu YH, Cheng JL, Hu HB, et al. Genome-wide identification of NAC family genes in oat and functional characterization of AsNAC109 in abiotic stress tolerance [J]. Plants, 2024, 13(7): 1017. |
35 | Song HY, Liu YL, Dong GQ, et al. Genome-wide characterization and comprehensive analysis of NAC transcription factor family in Nelumbo nucifera [J]. Front Genet, 2022, 13: 901838. |
36 | 叶方婷, 潘鑫峰, 毛志君, 等. 睡莲转录因子bZIP家族的分子进化以及功能分析 [J]. 中国农业科学, 2021, 54(21): 4694-4708. |
Ye FT, Pan XF, Mao ZJ, et al. Molecular evolution and function analysis of bZIP family in Nymphaea colorata [J]. Sci Agric Sin, 2021, 54(21): 4694-4708. | |
37 | 潘鑫峰, 叶方婷, 毛志君, 等. 睡莲WRKY家族的全基因组鉴定和分子进化分析 [J]. 园艺学报, 2022, 49(5): 1121-1135. |
Pan XF, Ye FT, Mao ZJ, et al. Genomic identification and molecular evolution of the WRKY family in Nymphaea colorata [J]. Acta Hortic Sin, 2022, 49(5): 1121-1135. | |
38 | Fan K, Wang M, Miao Y, et al. Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays [J]. PLoS One, 2014, 9(11): e111837. |
39 | Fan K, Li F, Chen JH, et al. Asymmetric evolution and expansion of the NAC transcription factor in polyploidized cotton [J]. Front Plant Sci, 2018, 9: 47. |
40 | 王奇峰, 胡清泉, 赵玥, 等. 光诱导和组成型启动子控制柠檬酸合酶基因过量表达对转基因烟草耐铝性影响的比较 [J]. 浙江大学学报: 农业与生命科学版, 2011, 37(1): 31-39. |
Wang QF, Hu QQ, Zhao Y, et al. Comparison study on effects of overexpressing citrate synthase driven by light-inducible promoter and constitutive promoter on Al tolerance of transgenic tobacco plants [J]. J Zhejiang Univ Agric Life Sci, 2011, 37(1): 31-39. | |
41 | Morishita T, Kojima Y, Maruta T, et al. Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light [J]. Plant Cell Physiol, 2009, 50(12): 2210-2222. |
42 | Zhang X, Long Y, Huang JJ, et al. OsNAC45 is involved in ABA response and salt tolerance in rice [J]. Rice (N Y), 2020, 13(1): 79. |
43 | Sablowski RW, Meyerowitz EM. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA [J]. Cell, 1998, 92(1): 93-103. |
44 | Yoo SY, Kim Y, Kim SY, et al. Control of flowering time and cold response by a NAC-domain protein in Arabidopsis [J]. PLoS One, 2007, 2(7): e642. |
45 | Lee BH, Jeon JO, Lee MM, et al. Genetic interaction between GROWTH-REGULATING FACTOR and CUP-SHAPED COTYLEDON in organ separation [J]. Plant Signal Behav, 2015, 10(2): e988071. |
[1] | 刘洁, 王飞, 陶婷, 张玉静, 陈浩婷, 张瑞星, 石玉, 张毅. 过表达SlWRKY41提高番茄幼苗抗旱性[J]. 生物技术通报, 2025, 41(2): 107-118. |
[2] | 马天意, 许家佳, 路文婧, 吴艳, 沙伟, 张梅娟, 彭疑芳. ‘金小童’大白菜BrcGASA3基因在盐碱胁迫下的表达分析及抗性鉴定[J]. 生物技术通报, 2025, 41(2): 127-138. |
[3] | 许圆梦, 毛娇, 王梦瑶, 王数, 任江陵, 刘宇涵, 刘思辰, 乔治军, 王瑞云, 曹晓宁. 糜子PmDEP1和PmEP3基因的克隆与表达特征分析[J]. 生物技术通报, 2025, 41(2): 150-162. |
[4] | 贾子健, 王宝强, 陈立飞, 王义真, 魏小红, 赵颖. 响应NO的藜麦CHX基因家族在盐碱胁迫下的表达模式[J]. 生物技术通报, 2025, 41(2): 163-174. |
[5] | 李艳伟, 杨妍妍, 孙亚玲, 霍雨猛, 王振宝, 刘冰江. 基于转录组分析植物激素对洋葱鳞茎膨大发育的调控机制[J]. 生物技术通报, 2025, 41(2): 187-201. |
[6] | 李禹欣, 李苗, 杜晓芬, 韩康妮, 连世超, 王军. 谷子SiSAP基因家族的鉴定与表达分析[J]. 生物技术通报, 2025, 41(1): 143-156. |
[7] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
[8] | 沈川, 李夏, 覃剑锋, 段龙飞, 刘佳. 基于软腐病菌诱导的魔芋酵母双杂交文库筛选WRKY72互作蛋白[J]. 生物技术通报, 2025, 41(1): 85-94. |
[9] | 宋兵芳, 柳宁, 程新艳, 徐晓斌, 田文茂, 高悦, 毕阳, 王毅. 马铃薯G6PDH基因家族鉴定及其在损伤块茎的表达分析[J]. 生物技术通报, 2024, 40(9): 104-112. |
[10] | 申鹏, 高雅彬, 丁红. 马铃薯SAT基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(9): 64-73. |
[11] | 马博涛, 伍国强, 魏明. bZIP转录因子在植物逆境胁迫响应和生长发育中的作用[J]. 生物技术通报, 2024, 40(9): 148-160. |
[12] | 吴慧琴, 王延宏, 刘涵, 司政, 刘雪晴, 王静, 阳宜, 成妍. 辣椒UGT基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 198-211. |
[13] | 满全财, 孟姿诺, 李伟, 蔡心汝, 苏润东, 付长青, 高顺娟, 崔江慧. 马铃薯AQP基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 51-63. |
[14] | 吴娟, 武小娟, 王沛捷, 谢锐, 聂虎帅, 李楠, 马艳红. 彩色马铃薯花青素合成相关ERF基因筛选及表达分析[J]. 生物技术通报, 2024, 40(9): 82-91. |
[15] | 李亦君, 杨小贝, 夏琳, 罗朝鹏, 徐馨, 杨军, 宁黔冀, 武明珠. 烟草NtPRR37基因克隆及功能分析[J]. 生物技术通报, 2024, 40(8): 221-231. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 270
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 64
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||