生物技术通报 ›› 2025, Vol. 41 ›› Issue (2): 187-201.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0671
• 研究报告 • 上一篇
李艳伟(), 杨妍妍, 孙亚玲, 霍雨猛, 王振宝(
), 刘冰江(
)
收稿日期:
2024-07-15
出版日期:
2025-02-26
发布日期:
2025-02-28
通讯作者:
刘冰江,男,博士,研究员,研究方向 :洋葱育种与分子生物学;E-mail: ycbjliu@163.com作者简介:
李艳伟,女,博士,助理研究员,研究方向 :洋葱分子遗传育种与生物学;E-mail: wwyixiao2013@163.com
基金资助:
LI Yan-wei(), YANG Yan-yan, SUN Ya-ling, HUO Yu-meng, WANG Zhen-bao(
), LIU Bing-jiang(
)
Received:
2024-07-15
Published:
2025-02-26
Online:
2025-02-28
摘要:
目的 通过对洋葱发育不同阶段的鳞茎组织进行转录组比较分析,为研究植物激素在洋葱鳞茎形成过程中的分子调控机制提供依据。 方法 分别取洋葱出苗后33、47、61和75 d的鳞茎部位为试验材料,通过酶联免疫吸附法和气相色谱法检测,了解生长素、细胞分裂素、赤霉素3、脱落酸以及乙烯(前体ACC)含量在鳞茎膨大过程中的变化趋势;利用高通量测序技术进行转录组测序分析,从分子水平阐述植物激素对鳞茎发育的影响。 结果 从4个发育阶段的鳞茎中共检测到11 814个差异表达基因(DEGs),其中共同DEGs有3 311个;KEGG富集分析显示,不同发育阶段比较组DEGs均显著富集到“植物激素信号转导”通路,并对该通路上筛选到的36个主要DEGs进行表征;结合WGCNA分析每个模块与性状的r和P值,筛选到2个关键模块,通过转录因子预测,挖掘到3 028个转录因子unigenes与13个植物激素信号结构基因unigenes共表达,转录因子unigenes功能注释来自46个基因家族,最多的为锌指蛋白(C2C2、C3H),其次为bHLH、NAC、ERF基因家族。 结论 通过转录组分析揭示了植物激素信号转导途径参与洋葱鳞茎膨大发育的相关基因。
李艳伟, 杨妍妍, 孙亚玲, 霍雨猛, 王振宝, 刘冰江. 基于转录组分析植物激素对洋葱鳞茎膨大发育的调控机制[J]. 生物技术通报, 2025, 41(2): 187-201.
LI Yan-wei, YANG Yan-yan, SUN Ya-ling, HUO Yu-meng, WANG Zhen-bao, LIU Bing-jiang. Regulation Mechanism of Plant Hormones Related to Onion Bulb Enlargement and Development Based on Transcriptome Analysis[J]. Biotechnology Bulletin, 2025, 41(2): 187-201.
基因名称Gene name | 上游引物Forward primer (5′-3′) | 下游引物Reverse primer (5′-3′) |
---|---|---|
SAUR40 | F: AGGAGAAGAGATGAAGAGGT | R: TTACAAAAAGAAAAGGAGGA |
SAUR50 | F: GCAATGAAGTAAGTGAAAGG | R: GGAAAATAGTAAAGAGGTGT |
SAUR32 | F: TTCAGCCAGACCTAAGAGCG | R: CATAGCAACCACAGAACCCA |
SCL32 | F: AGAGGATAGAGAGGTCGGA | R: ATAGGCATTTTCTTTGGTT |
XTH22 | F: ATACAAGAACTTCAAGGCAG | R: ATTTTACAATAAGCACACCA |
SUS | F: AATGCTTCACTTCCCCGCC | R: TCGCCCCAACCCTTCTCTA |
GLU2 | F: GGTGGGATGGGAAACATAGGA | R: AAAGGAGGGTGGAAGTGGAGA |
PGIP2 | F: CCCTTCTTTTCTCGCTAACCT | R: ATACCCCATTGTGGCACTCCT |
LSH4A | F: TTGACCAGTTTGGAAAGACC | R: GCAGTAGCAGTAACAGGAGC |
LSH4B | F: GCAGCGGGAGAGGGTAAGG | R: AAAAAGGCGGAAGGAAAAA |
Actin | F: ACACGGCCTGGATAGCAACAT | R: AGAGCAGTATTCCCAAGCATT |
表1 RT-qPCR引物序列信息
Table 1 Information of RT-qPCR primer sequences
基因名称Gene name | 上游引物Forward primer (5′-3′) | 下游引物Reverse primer (5′-3′) |
---|---|---|
SAUR40 | F: AGGAGAAGAGATGAAGAGGT | R: TTACAAAAAGAAAAGGAGGA |
SAUR50 | F: GCAATGAAGTAAGTGAAAGG | R: GGAAAATAGTAAAGAGGTGT |
SAUR32 | F: TTCAGCCAGACCTAAGAGCG | R: CATAGCAACCACAGAACCCA |
SCL32 | F: AGAGGATAGAGAGGTCGGA | R: ATAGGCATTTTCTTTGGTT |
XTH22 | F: ATACAAGAACTTCAAGGCAG | R: ATTTTACAATAAGCACACCA |
SUS | F: AATGCTTCACTTCCCCGCC | R: TCGCCCCAACCCTTCTCTA |
GLU2 | F: GGTGGGATGGGAAACATAGGA | R: AAAGGAGGGTGGAAGTGGAGA |
PGIP2 | F: CCCTTCTTTTCTCGCTAACCT | R: ATACCCCATTGTGGCACTCCT |
LSH4A | F: TTGACCAGTTTGGAAAGACC | R: GCAGTAGCAGTAACAGGAGC |
LSH4B | F: GCAGCGGGAGAGGGTAAGG | R: AAAAAGGCGGAAGGAAAAA |
Actin | F: ACACGGCCTGGATAGCAACAT | R: AGAGCAGTATTCCCAAGCATT |
图1 不同发育阶段洋葱鳞茎形态变化A:不同发育阶段洋葱鳞茎形态,P1:四叶期,P2:膨大初期,P3:膨大中期,P4:膨大后期,比例尺为5 mm;B:不同发育阶段时间点的鳞茎直径统计,*表示0.05水平差异显著。下同
Fig. 1 Morphological changes of onion bulb at different developmental stagesA: Morphology of onion bulb at different developmental stages; P1: four-leaf stage; P2: early formation stage; P3: middle formation stage; P4: later formation stage. Scale=5 mm. B: The length of bulb diameter at different developmental stage points, * indicates significant difference at 0.05 level. The same below
图2 不同发育阶段鳞茎中各类激素含量分析**表示0.01水平差异显著,***表示0.001水平差异显著;下同
Fig. 2 Analysis of various hormone contents in bulb at different developmental stages** indicates significant difference at 0.01 level, and *** indicates significant difference at 0.001 level. The same below
样品 Sample | 原始数据 Raw data/Gb | 干净数据 Clean data/Gb | Q20/% | Q30/% | GC含量 GC Content/% | 外显子 Exon/% | 内含子 Intron/% | 基因间区 Intergenic/% |
---|---|---|---|---|---|---|---|---|
P1-1 | 5.39 | 4.98 | 98.72 | 94.77 | 43 | 86.68 | 2.92 | 10.40 |
P1-2 | 5.6 | 5.05 | 98.81 | 95.25 | 43 | 87.15 | 2.69 | 10.16 |
P1-3 | 5.54 | 5.07 | 98.86 | 95.44 | 43 | 87.22 | 2.86 | 9.92 |
P2-1 | 6.16 | 5.79 | 98.79 | 95.04 | 42 | 85.83 | 2.95 | 11.23 |
P2-2 | 6.27 | 5.89 | 98.71 | 93.70 | 42 | 86.29 | 2.92 | 10.79 |
P2-3 | 6.53 | 6.1 | 98.81 | 94.27 | 42 | 85.88 | 2.93 | 11.19 |
P3-1 | 6.26 | 5.88 | 98.82 | 95.23 | 42 | 84.54 | 3.44 | 12.02 |
P3-2 | 6.24 | 5.89 | 98.74 | 94.94 | 42 | 83.91 | 3.72 | 12.37 |
P3-3 | 5.41 | 4.94 | 98.68 | 94.81 | 42 | 84.10 | 3.40 | 12.51 |
P4-1 | 6.42 | 5.86 | 98.85 | 95.40 | 42 | 84.44 | 3.47 | 12.08 |
P4-2 | 5.99 | 5.47 | 98.76 | 95.19 | 42 | 84.55 | 3.62 | 11.83 |
P4-3 | 6.28 | 5.79 | 98.78 | 95.08 | 42 | 85.08 | 3.29 | 11.62 |
表2 转录组测序数据统计与质量评估
Table 2 Statistics and quality assessment of transcriptome sequencing data assembly
样品 Sample | 原始数据 Raw data/Gb | 干净数据 Clean data/Gb | Q20/% | Q30/% | GC含量 GC Content/% | 外显子 Exon/% | 内含子 Intron/% | 基因间区 Intergenic/% |
---|---|---|---|---|---|---|---|---|
P1-1 | 5.39 | 4.98 | 98.72 | 94.77 | 43 | 86.68 | 2.92 | 10.40 |
P1-2 | 5.6 | 5.05 | 98.81 | 95.25 | 43 | 87.15 | 2.69 | 10.16 |
P1-3 | 5.54 | 5.07 | 98.86 | 95.44 | 43 | 87.22 | 2.86 | 9.92 |
P2-1 | 6.16 | 5.79 | 98.79 | 95.04 | 42 | 85.83 | 2.95 | 11.23 |
P2-2 | 6.27 | 5.89 | 98.71 | 93.70 | 42 | 86.29 | 2.92 | 10.79 |
P2-3 | 6.53 | 6.1 | 98.81 | 94.27 | 42 | 85.88 | 2.93 | 11.19 |
P3-1 | 6.26 | 5.88 | 98.82 | 95.23 | 42 | 84.54 | 3.44 | 12.02 |
P3-2 | 6.24 | 5.89 | 98.74 | 94.94 | 42 | 83.91 | 3.72 | 12.37 |
P3-3 | 5.41 | 4.94 | 98.68 | 94.81 | 42 | 84.10 | 3.40 | 12.51 |
P4-1 | 6.42 | 5.86 | 98.85 | 95.40 | 42 | 84.44 | 3.47 | 12.08 |
P4-2 | 5.99 | 5.47 | 98.76 | 95.19 | 42 | 84.55 | 3.62 | 11.83 |
P4-3 | 6.28 | 5.79 | 98.78 | 95.08 | 42 | 85.08 | 3.29 | 11.62 |
图3 鳞茎不同发育阶段差异表达基因分析A:差异表达基因数量;B:差异表达基因的韦恩图;C:3个比较组间共有差异基因的趋势分析
Fig. 3 DEGs analysis in different developmental stages of bulbA: Numbers of DEGs. B: Venn diagram of DEGs. C: STEM analysis of shared DEGs among the three comparison groups
图5 生长素、细胞分裂素、赤霉素、脱落酸以及乙烯信号转导途径差异表达基因分析A:生长素、细胞分类素、赤霉素、脱落酸、乙烯信号转导途径;B:植物激素信号转导相关基因热图。热图表示不同处理间差异基因的FPKM值,颜色越红,数值越高;从左到右样本依次为P1、P2、P3和P4
Fig. 5 Analysis of DEGs in IAA, CTK, GA, ABA, and ETH signal transduction pathwaysA: IAA, CTK, GA, ABA, and ETH signal transduction pathway. B: Heat map of plant hormone signal transduction metabolism-related genes. The heat map showed the FPKM value of different genes at different stages and the higher the value, the redder the color. From left to right, the samples are P1, P2, P3 and P4
图6 基因共表达网络的可视化A:最佳软阈值的选择;B:差异表达基因的系统聚类树和基因模块,不同颜色代表不同的模块;C:各模块中的基因数量
Fig. 6 Visualization of gene co-expression networksA: Selection of optimal soft threshold. B: Cluster dendrogram and gene modules of DEGs. Different colors indicate different modules. C: Gene number of each module
图7 模块与表型的相关性分析及核心基因共表达网络可视化A:植物激素信号转导模块相关基因的共表达网络可视化;转录因子用三角形表示,结构基因用红色圆形表示,图形越大表明基因连通度越高;B:模块与鳞茎直径相关性热图,每个格子的值分别表示相关系数R2 和P值,红色表示正相关,蓝色表示负相关
Fig. 7 Correlation analysis between modules and phenotypes and co-expression networks visualization of core genesA: Co-expression network visualization of plant hormone signal transduction modules. Transcription factors are represented by triangles, while structural genes are represented by red circles. The larger the graph, the higher the connectivity of genes. B: Correlation heat map between module and trait. The values of each lattice indicate the correlation coefficients R2 and P, respectively. Red indicates positive correlation, and blue indicates negative correlation
29 | Roumeliotis E, Kloosterman B, Oortwijn M, et al. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato [J]. J Exp Bot, 2012, 63(12): 4539-4547. |
30 | Cheng LX, Wang YP, Liu YS, et al. Comparative proteomics illustrates the molecular mechanism of potato (Solanum tuberosum L.) tuberization inhibited by exogenous gibberellins in vitro [J]. Physiol Plant, 2018, 163(1): 103-123. |
31 | Zheng RR, Wu Y, Xia YP. Chlorocholine chloride and paclobutrazol treatments promote carbohydrate accumulation in bulbs of Lilium Oriental hybrids 'Sorbonne' [J]. J Zhejiang Univ Sci B, 2012, 13(2): 136-144. |
32 | Kloosterman B, Vorst O, Hall RD, et al. Tuber on a chip: differential gene expression during potato tuber development [J]. Plant Biotechnol J, 2005, 3(5): 505-519. |
33 | Argyros RD, Mathews DE, Chiang YH, et al. Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development [J]. Plant Cell, 2008, 20(8): 2102-2116. |
34 | Ramireddy E, Brenner WG, Pfeifer A, et al. In planta analysis of a cis-regulatory cytokinin response motif in Arabidopsis and identification of a novel enhancer sequence [J]. Plant Cell Physiol, 2013, 54(7): 1079-1092. |
35 | 袁文甲. 细胞分裂素应答因子OsRR2参与水稻根发育的调控机制研究 [D]. 武汉: 华中农业大学, 2017. |
Yuan WJ. Study on the regulatory mechanism of mitogen response factor OsRR2 involved in rice root development [D]. Wuhan: Huazhong Agricultural University, 2017. | |
36 | Osorio S, Alba R, Damasceno CMB, et al. Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions [J]. Plant Physiol, 2011, 157(1): 405-425. |
37 | Tiessen A, Hendriks JHM, Stitt M, et al. Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply [J]. Plant Cell, 2002, 14(9): 2191-2213. |
38 | 童南奎, 陈世儒. 芥菜几个品种主要经济性状的遗传规律研究 [J]. 园艺学报, 1992, 19(2): 151-156. |
Tong NK, Chen SR. Genetic studies on some important characters of vegetable mustard [J]. Acta Hortic Sin, 1992, 19(2): 151-156. | |
1 | 周爱凤, 刘磊, 刘刚, 等. 洋葱鳞茎特性的初步研究 [J]. 农业科技通讯, 2013(10): 112-113, 166. |
Zhou AF, Liu L, Liu G, et al. Preliminary study on the characteristics of onion bulb [J]. Bull Agric Sci Technol, 2013(10): 112-113, 166. | |
2 | Zheng YQ, Liu YM, Ma M, et al. Increasing in vitro microrhizome production of ginger (Zingiber officinale Roscoe) [J]. Acta Physiol Plant, 2008, 30(4): 513-519. |
3 | 孙玉燕, 李锡香. 蔬菜变态根茎发育的分子机理研究进展 [J]. 中国农业科学, 2015, 48(6): 1162-1176. |
Sun YY, Li XX. A review on molecular mechanism of the modified roots or stems development in vegetables [J]. Sci Agric Sin, 2015, 48(6): 1162-1176. | |
4 | 张玲. 生长素和细胞分裂素在马铃薯块茎发育中的作用 [J]. 中国农业信息, 2014, 26(21): 14. |
Zhang L. The role of auxin and cytokinin in potato Tuber development [J]. China Agric Inf, 2014, 26(21): 14. | |
5 | Wang DX, Cheng LX, Wang YP, et al. Comparative proteomic analysis of potato (Solanum tuberosum L.) tuberization in vitro regulated by IAA [J]. Am J Potato Res, 2018, 95(4): 395-412. |
6 | Simm S, Scharf KD, Jegadeesan S, et al. Survey of genes involved in biosynthesis, transport, and signaling of phytohormones with focus on Solanum lycopersicum [J]. Bioinform Biol Insights, 2016, 10: 185-207. |
7 | Dong TT, Zhu MK, Yu JW, et al. RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.) [J]. BMC Plant Biol, 2019, 19(1): 136. |
8 | Borzenkova RA, Borovkova MP. Developmental patterns of phytohormone content in the cortex and pith of potato tubers as related to their growth and starch content [J]. Russ J Plant Physiol, 2003, 50(1): 119-124. |
9 | Lomin SN, Myakushina YA, Kolachevskaya OO, et al. Global view on the cytokinin regulatory system in potato [J]. Front Plant Sci, 2020, 11: 613624. |
39 | 姜立杰. 芜菁直根膨大性状的AFLP分析 [D]. 杭州: 浙江大学, 2001. |
Jiang LJ. AFLP analysis of swelling characteristics of turnip straight roots [D]. Hangzhou: Zhejiang University, 2001. | |
40 | Chen H, Rosin FM, Prat S, et al. Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation [J]. Plant Physiol, 2003, 132(3): 1391-1404. |
41 | Chen H, Banerjee AK, Hannapel DJ. The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1 [J]. Plant J, 2004, 38(2): 276-284. |
42 | Cheng LB, Li SY, Yin JJ, et al. Genome-wide analysis of differentially expressed genes relevant to rhizome formation in lotus root (Nelumbo nucifera gaertn) [J]. PLoS One, 2013, 8(6): e67116. |
43 | Hall TM. Multiple modes of RNA recognition by zinc finger proteins [J]. Curr Opin Struct Biol, 2005, 15(3): 367-373. |
44 | Gourcilleau D, Lenne C, Armenise C, et al. Phylogenetic study of plant Q-type C2H2 zinc finger proteins and expression analysis of poplar genes in response to osmotic, cold and mechanical stresses [J]. DNA Res, 2011, 18(2): 77-92. |
45 | Iuchi S. Three classes of C2H2 zinc finger proteins [J]. Cell Mol Life Sci, 2001, 58(4): 625-635. |
46 | Molnár G, Bancoş S, Nagy F, et al. Characterisation of BRH1 a brassinosteroid-responsive RING-H2 gene from Arabidopsis thaliana [J]. Planta, 2002, 215(1): 127-133. |
47 | Yun JY, Weigel D, Lee I. Ectopic expression of SUPERMAN suppresses development of petals and stamens [J]. Plant Cell Physiol, 2002, 43(1): 52-57. |
48 | Malik AH, Ashraf N. Transcriptome wide identification, phylogenetic analysis, and expression profiling of zinc-finger transcription factors from Crocus sativus L [J]. Mol Genet Genomics, 2017, 292(3): 619-633. |
49 | Li WT, He M, Wang J, et al. Zinc finger protein (ZFP) in plants-a review [J]. Plant OMICS, 2013, 6(6): 474-480. |
10 | Muñiz García MN, Stritzler M, Capiati DA. Heterologous expression of Arabidopsis ABF4 gene in potato enhances tuberization through ABA-GA crosstalk regulation [J]. Planta, 2014, 239(3): 615-631. |
11 | 朱文姣, 刘璐, 章甲, 等. ABA合成基因StNCED2对马铃薯块茎形成的影响 [J]. 南京农业大学学报, 2019, 42(5): 854-861. |
Zhu WJ, Liu L, Zhang J, et al. Effects of over-expressing ABA synthetic gene StNCED2 on potato tuberization [J]. J Nanjing Agric Univ, 2019, 42(5): 854-861. | |
12 | Kolachevskaya OO, Lomin SN, Arkhipov DV, et al. Auxins in potato: molecular aspects and emerging roles in tuber formation and stress resistance [J]. Plant Cell Rep, 2019, 38(6): 681-698. |
13 | Finkers R, van Kaauwen M, Ament K, et al. Insights from the first genome assembly of Onion (Allium cepa) [J]. G3, 2021, 11(9): jkab243. |
14 | Hao F, Liu X, Zhou BT, et al. Chromosome-level genomes of three key Allium crops and their trait evolution [J]. Nat Genet, 2023, 55(11): 1976-1986. |
15 | Yang PT, Yuan Y, Yan C, et al. AlliumDB: a central portal for comparative and functional genomics in Allium [J]. Hortic Res, 2023, 11(2): uhad285. |
16 | 武语笛. 芸薹属作物根膨大相关基因研究 [D]. 北京: 中国农业科学院, 2021. |
Wu YD. Study on genes related to root swelling of Brassica crops [D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
17 | 许俊旭, 李青竹, 李叶, 等. 石蒜鳞茎膨大过程中内源激素相关基因的差异表达研究 [J]. 园艺学报, 2020, 47(6): 1126-1140. |
Xu JX, Li QZ, Li Y, et al. Differential expression of genes related to endogenous hormone during bulb development in Lycoris radiata [J]. Acta Hortic Sin, 2020, 47(6): 1126-1140. | |
18 | 卢晓月, 李大伟, 邬倩, 等. 马铃薯块茎不同发育时期转录组分析 [J]. 云南师范大学学报: 自然科学版, 2021, 41(4): 25-32. |
Lu XY, Li DW, Wu Q, et al. Transcriptome analysis of potato tuber at different development stages [J]. J Yunnan Norm Univ Nat Sci Ed, 2021, 41(4): 25-32. | |
19 | Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct Method [J]. Methods, 2001, 25(4): 402-408. |
20 | Gray WM. Hormonal regulation of plant growth and development [J]. PLoS Biol, 2004, 2(9): E311. |
21 | Fenn MA, Giovannoni JJ. Phytohormones in fruit development and maturation [J]. Plant J, 2021, 105(2): 446-458. |
22 | Li M, Chen R, Gu H, et al. Grape small auxin upregulated RNA (SAUR) 041 is a candidate regulator of berry size in grape [J]. Int J Mol Sci, 2021, 22(21): 11818. |
23 | Eviatar-Ribak T, Shalit-Kaneh A, Chappell-Maor L, et al. A cytokinin-activating enzyme promotes tuber formation in tomato [J]. Curr Biol, 2013, 23(12): 1057-1064. |
24 | Kolachevskaya OO, Alekseeva VV, Sergeeva LI, et al. Expression of auxin synthesis gene tms1 under control of tuber-specific promoter enhances potato tuberization in vitro [J]. J Integr Plant Biol, 2015, 57(9): 734-744. |
25 | Gao JP, Cao XL, Shi SD, et al. Genome-wide survey of Aux/IAA gene family members in potato (Solanum tuberosum): identification, expression analysis, and evaluation of their roles in tuber development [J]. Biochem Biophys Res Commun, 2016, 471(2): 320-327. |
26 | Aung LH, Purohit SS. Growth substances and environment on the development of vegetative storage organs [J]. Hormonal Regulation of Plant Growth and Development, 1990: 91-105. |
27 | 许俊旭, 李青竹, 杨柳燕, 等. 赤霉素和细胞分裂素对石蒜鳞茎膨大的调控作用及其生理机制 [J]. 植物生理学报, 2019, 55(7): 1029-1037. |
Xu JX, Li QZ, Yang LY, et al. The effect and the physiological mechanism of gibberellin and cytokinin on the regulation of Lycoris radiata bulb development [J]. Plant Physiol J, 2019, 55(7): 1029-1037. | |
28 | Faivre-Rampant O, Cardle L, Marshall D, et al. Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene [J]. J Exp Bot, 2004, 55(397): 613-622. |
[1] | 刘洁, 王飞, 陶婷, 张玉静, 陈浩婷, 张瑞星, 石玉, 张毅. 过表达SlWRKY41提高番茄幼苗抗旱性[J]. 生物技术通报, 2025, 41(2): 107-118. |
[2] | 沈川, 李夏, 覃剑锋, 段龙飞, 刘佳. 基于软腐病菌诱导的魔芋酵母双杂交文库筛选WRKY72互作蛋白[J]. 生物技术通报, 2025, 41(1): 85-94. |
[3] | 马博涛, 伍国强, 魏明. bZIP转录因子在植物逆境胁迫响应和生长发育中的作用[J]. 生物技术通报, 2024, 40(9): 148-160. |
[4] | 吴娟, 武小娟, 王沛捷, 谢锐, 聂虎帅, 李楠, 马艳红. 彩色马铃薯花青素合成相关ERF基因筛选及表达分析[J]. 生物技术通报, 2024, 40(9): 82-91. |
[5] | 聂祝欣, 郭瑾, 乔子洋, 李微薇, 张学燕, 刘春阳, 王静. 黑果枸杞不同发育时期果实花色苷合成的转录组分析[J]. 生物技术通报, 2024, 40(8): 106-117. |
[6] | 杨巍, 赵丽芬, 唐兵, 周麟笔, 杨娟, 莫传园, 张宝会, 李飞, 阮松林, 邓英. 芥菜SRO基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2024, 40(8): 129-141. |
[7] | 李雨晴, 吴楠, 罗建让. 卵叶牡丹花色苷合成相关基因bHLH的克隆与功能分析[J]. 生物技术通报, 2024, 40(8): 174-185. |
[8] | 臧文蕊, 马明, 砗根, 哈斯阿古拉. 甜瓜BZR转录因子家族基因的全基因组鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(7): 163-171. |
[9] | 王玉书, 赵琳琳, 赵爽, 胡琦, 白慧霞, 王欢, 曹业萍, 范震宇. 大白菜BrCYP83B1基因的克隆及表达分析[J]. 生物技术通报, 2024, 40(6): 152-160. |
[10] | 张迪, 鞠睿, 李丽梅, 王煜倩, 陈瑞, 王新一. 基于转录因子生物传感器在环境分析中的应用[J]. 生物技术通报, 2024, 40(6): 114-125. |
[11] | 胡雅丹, 伍国强, 刘晨, 魏明. MYB转录因子在调控植物响应逆境胁迫中的作用[J]. 生物技术通报, 2024, 40(6): 5-22. |
[12] | 王秋月, 段鹏亮, 李海笑, 刘宁, 曹志艳, 董金皋. 玉米大斑病菌cDNA文库的构建及转录因子StMR1互作蛋白的筛选[J]. 生物技术通报, 2024, 40(6): 281-289. |
[13] | 刘蓉, 田闵玉, 李光泽, 谭成方, 阮颖, 刘春林. 甘蓝型油菜REVEILLE家族鉴定及诱导表达分析[J]. 生物技术通报, 2024, 40(6): 161-171. |
[14] | 王健, 杨莎, 孙庆文, 陈宏宇, 杨涛, 黄园. 金钗石斛bHLH转录因子家族全基因组鉴定及表达分析[J]. 生物技术通报, 2024, 40(6): 203-218. |
[15] | 王迪, 张晓宇, 宋宇鑫, 郑东然, 田静, 李玉花, 王宇, 吴昊. 细胞全能性转录因子调控植物组培再生的分子机制研究进展[J]. 生物技术通报, 2024, 40(6): 23-33. |
阅读次数 | ||||||
全文 52
|
|
|||||
摘要 |
|
|||||