生物技术通报 ›› 2024, Vol. 40 ›› Issue (8): 106-117.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0247
聂祝欣1(), 郭瑾1, 乔子洋1, 李微薇1, 张学燕1, 刘春阳1, 王静1,2()
收稿日期:
2024-03-14
出版日期:
2024-08-26
发布日期:
2024-07-31
通讯作者:
王静,女,博士,副教授,研究方向:植物生态学;E-mail: wangjing_imu@163.com作者简介:
聂祝欣,女,硕士研究生,研究方向:植物生态学;E-mail: 1538379214@qq.com
基金资助:
NIE Zhu-xin1(), GUO Jin1, QIAO Zi-yang1, LI Wei-wei1, ZHANG Xue-yan1, LIU Chun-yang1, WANG Jing1,2()
Received:
2024-03-14
Published:
2024-08-26
Online:
2024-07-31
摘要:
【目的】探究黑果枸杞果实发育过程中花色苷合成的分子机制,对深入理解黑果枸杞花色苷合成调控网络具有重要意义。【方法】选取青果期、转色初期、转色后期、成熟期和完全成熟期的黑果枸杞果实进行转录组测序,挖掘与黑果枸杞果实花色苷合成相关的候选基因。【结果】随黑果枸杞果实发育,花色苷含量逐渐升高,成熟期及完全成熟期果实中的花色苷含量显著高于青果期、转色初期及转色后期。5个发育时期共筛选出13 540个差异表达基因(differentially expressed genes, DEGs),以青果期为对照,随果实发育,各阶段DEGs数量逐渐增多。GO分析发现,DEGs共同富集的子集有苯丙烷代谢过程、多糖分解代谢过程、苯丙烷生物合成过程、类黄酮生物合成过程、细胞壁大分子代谢过程、膜锚定成分和营养库活性通路。KEGG分析表明,DEGs显著富集于类黄酮生物合成、苯丙烷生物合成、植物激素信号转导、二苯乙烯类、二芳基庚烷类和姜辣素生物合成及角质和木栓质和蜡质的生物合成通路。分析DEGs表达量与花色苷含量相关性,筛选出参与黑果枸杞果实发育过程花色苷合成的候选基因36个,主要包括10个花色苷合成通路结构基因,4个转录因子,9个ABA、8个GA及5个JA信号转导通路基因。RT-qPCR验证其中10个基因的表达趋势,与转录组数据一致。【结论】黑果枸杞果实发育过程中,花色苷合成途径的结构基因、转录因子及ABA、GA和JA信号转导通路中基因的表达调控果实着色。
聂祝欣, 郭瑾, 乔子洋, 李微薇, 张学燕, 刘春阳, 王静. 黑果枸杞不同发育时期果实花色苷合成的转录组分析[J]. 生物技术通报, 2024, 40(8): 106-117.
NIE Zhu-xin, GUO Jin, QIAO Zi-yang, LI Wei-wei, ZHANG Xue-yan, LIU Chun-yang, WANG Jing. Transcriptome Analysis of the Anthocyanin Biosynthesis in the Fruit Development Processes of Lycium ruthenicum Murr.[J]. Biotechnology Bulletin, 2024, 40(8): 106-117.
基因ID Gene ID | GenBank登录号GenBank number | 引物序列Primer sequence(5'-3') | 扩增长度Amplification length/bp |
---|---|---|---|
Cluster-53530 | — | F: ACCGATGAAGAACTCGTCGTCCA | 228 |
R: GGTAGCCTTCCAATAACCCGATGT | |||
Cluster-54040 | KY287796 | F: CTAAATGCCCCCAACCAGAACT | 124 |
R: GTTACCCACTTCCCTTCATAGA | |||
Cluster-55329 | OQ414189 | F: TTTTGGACTGCTGGTTCTTGTT | 260 |
R: TTGAGGTCTTTGTTGATTATCGG | |||
Cluster-57771 | — | F: CAAGGAGGAAATGCAAAGAGGAGC | 254 |
R: CTATTAGGGACCATCTGTTGCCAAG | |||
Cluster-59360 | — | F: CCGATGTAACGGATGGTGTCTA | 182 |
R: GGGGCTGATTTGTCTCTATTGC | |||
Cluster-67674 | KY287799 | F: AGAATGGGCACTGGCAGAAATGAT | 210 |
R: ACTACACACGGCTCGTTTGATACC | |||
Cluster-67748 | KF031378 | F: TCCCTTTTCCTTCCGAGTTCAT | 164 |
R: TGTTTTGCCCTTCCACTGCTGC | |||
Cluster-73437 | KY287797 | F: CACGGTAAGGAGACTGGTTTTCA | 167 |
R: CAGCCTTCTCTGCCAGTATCTTG | |||
Cluster-74326 | KY287798 | F: CAGTGGTGAACTCGGATAGCAGCA | 117 |
R: GCTCCGCCATTACTGCTTTCTCTC | |||
Cluster-76366 | — | F: GCAATCTCTTGTTCCTGGTTGTGAC | 288 |
R: GGATACCCGCTGTTAGTGTTAGGAA | |||
LrH2B1 | — | F: AGTGCTTCCTGGTGAATTGG | 163 |
R: TGGATAATACCTAGCCCTAGTTTCC |
表1 本研究所用引物序列
Table 1 Primer sequences used in this study
基因ID Gene ID | GenBank登录号GenBank number | 引物序列Primer sequence(5'-3') | 扩增长度Amplification length/bp |
---|---|---|---|
Cluster-53530 | — | F: ACCGATGAAGAACTCGTCGTCCA | 228 |
R: GGTAGCCTTCCAATAACCCGATGT | |||
Cluster-54040 | KY287796 | F: CTAAATGCCCCCAACCAGAACT | 124 |
R: GTTACCCACTTCCCTTCATAGA | |||
Cluster-55329 | OQ414189 | F: TTTTGGACTGCTGGTTCTTGTT | 260 |
R: TTGAGGTCTTTGTTGATTATCGG | |||
Cluster-57771 | — | F: CAAGGAGGAAATGCAAAGAGGAGC | 254 |
R: CTATTAGGGACCATCTGTTGCCAAG | |||
Cluster-59360 | — | F: CCGATGTAACGGATGGTGTCTA | 182 |
R: GGGGCTGATTTGTCTCTATTGC | |||
Cluster-67674 | KY287799 | F: AGAATGGGCACTGGCAGAAATGAT | 210 |
R: ACTACACACGGCTCGTTTGATACC | |||
Cluster-67748 | KF031378 | F: TCCCTTTTCCTTCCGAGTTCAT | 164 |
R: TGTTTTGCCCTTCCACTGCTGC | |||
Cluster-73437 | KY287797 | F: CACGGTAAGGAGACTGGTTTTCA | 167 |
R: CAGCCTTCTCTGCCAGTATCTTG | |||
Cluster-74326 | KY287798 | F: CAGTGGTGAACTCGGATAGCAGCA | 117 |
R: GCTCCGCCATTACTGCTTTCTCTC | |||
Cluster-76366 | — | F: GCAATCTCTTGTTCCTGGTTGTGAC | 288 |
R: GGATACCCGCTGTTAGTGTTAGGAA | |||
LrH2B1 | — | F: AGTGCTTCCTGGTGAATTGG | 163 |
R: TGGATAATACCTAGCCCTAGTTTCC |
图1 黑果枸杞不同发育时期果实的表型(A)和花色苷含量(B) BS1:青果期;BS2:转色初期;BS3:转色后期;BS4:成熟期;BS5:完全成熟期;以BS1为对照,** P < 0.01,*** P < 0.001。下同
Fig. 1 Phenotypes(A)and anthocyanin contents(B)of fruit at different developmental stages of L. rutheni-cum Murr. BS1: Green fruit stage. BS2: Early color-changing stage. BS3: Late color-changing stage. BS4: Ripeness stage. BS5: Complete ripeness stage. Using BS1 as a control, ** P < 0.01, *** P < 0.001. The same below
图3 黑果枸杞不同发育时期果实中差异表达基因GO富集分析 绿色: 生物学过程;灰色: 细胞组分;紫色: 分子功能
Fig. 3 Gene ontology annotation of DEGs in the fruits at different stages of L. ruthenicum Murr. Green: Biological process. Gray: Cell component. Purple: Molecular function
图6 KEGG富集通路上参与花色苷生物合成的候选基因及与花色苷的相关性 R2:基因表达量(FPKM)与花色苷含量的相关性,下同
Fig. 6 Candidate genes related to anthocyanin biosynthesis in KEGG pathway and their correlation with anthocyanins R2: Correlation between gene expression(FPKM)and anthocyanin content. The same below
图7 植物激素信号转导通路关键基因表达热图 A:ABA信号转导通路;B:GA信号转导通路;C:JA信号转导通路
Fig. 7 Heat map of expressions of key genes in plant hormone signal transduction pathway A: ABA signal transduction pathway. B: GA signal transduction pathway. C: JA signal transduction pathway
图8 转录组数据验证 以BS1为对照,* P < 0.05,** P < 0.01和*** P < 0.001;R2:转录组数据(RNA-seq)与RT-qPCR结果(RT-qPCR)的相关性
Fig. 8 Validation of transcriptome data Using BS1 as a control, * P < 0.05, ** P < 0.01, and *** P < 0.001. R2: Correlation between transcriptome data(RNA-seq)and RT-qPCR result(RT-qPCR)
[1] | 薛晓敏. 套袋苹果果皮光照诱导后黑暗着色机理解析[D]. 杨凌: 西北农林科技大学, 2021. |
Xue XM. Analysis of dark coloring mechanism of bagged apple peel induced by light[D]. Yangling: Northwest A & F University, 2021. | |
[2] | 徐僡, 郑远静, 高方平, 等. 花色苷的生物合成及其影响因素研究进展[J]. 江苏农业学报, 2019, 35(5): 1246-1253. |
Xu H, Zheng YJ, Gao FP, et al. Advances in the biosynthesis and influencing factors of anthocyanins[J]. Jiangsu J Agric Sci, 2019, 35(5): 1246-1253. | |
[3] | Alappat B, Alappat J. Anthocyanin pigments: beyond aesthetics[J]. Molecules, 2020, 25(23): 5500. |
[4] |
高国应, 伍小方, 张大为, 等. MBW复合体在植物花青素合成途径中的研究进展[J]. 生物技术通报, 2020, 36(1): 126-134.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0738 |
Gao GY, Wu XF, Zhang DW, et al. Research progress on the MBW complexes in plant anthocyanin biosynthesis pathway[J]. Biotechnol Bull, 2020, 36(1): 126-134. | |
[5] | 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1978. |
Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China[M]. Beijing: Science Press, 1978. | |
[6] | Wang HQ, Li JN, Tao WW, et al. Lycium ruthenicum studies: molecular biology, phytochemistry and pharmacology[J]. Food Chem, 2018, 240: 759-766. |
[7] | Chen SS, Wang HL, Hu N. Long-term dietary Lycium ruthenicum Murr. anthocyanins intake alleviated oxidative stress-mediated aging-related liver injury and abnormal amino acid metabolism[J]. Foods, 2022, 11(21): 3377. |
[8] | Zhang MJ, Xing LJ, Wang Y, et al. Anti-fatigue activities of anthocyanins from Lycium ruthenicum Murry[J]. Food Sci Technol, 2022, 42: e242703. |
[9] |
林丽, 李进, 李永洁, 等. 黑果枸杞花色苷对氧化低密度脂蛋白损伤血管内皮细胞的保护作用[J]. 中国药学杂志, 2013, 48(8): 606-611.
doi: 10.11669/cpj.2013.08.008 |
Lin L, Li J, Li YJ, et al. Protective effects of Lycium ruthenicum anthocyanins on the vascular endothelial cells with oxidative injury by oxidized low-density lipoprotein in vitro[J]. Chin Pharm J, 2013, 48(8): 606-611. | |
[10] | Li ZL, Mi J, Lu L, et al. The main anthocyanin monomer of Lycium ruthenicum Murray induces apoptosis through the ROS/PTEN/PI3K/Akt/caspase3 signaling pathway in prostate cancer DU-145 cells[J]. Food Funct, 2021, 12(4): 1818-1828. |
[11] | 武雪玲, 李筱筱, 贾世亮, 等. 黑果枸杞花青素对Aβ42致痴呆模型大鼠记忆力及抗氧化活性研究[J]. 现代食品科技, 2017, 33(3): 29-34. |
Wu XL, Li XX, Jia SL, et al. Memory enhancing and antioxidant activities of Lycium ruthenicum Murray anthocyanin extracts in an Aβ42-induced rat model of dementia[J]. Mod Food Sci Technol, 2017, 33(3): 29-34. | |
[12] |
孙燕, 王金刚, 臧丹丹, 等. 不同发育时期蓝果忍冬果实的转录组分析[J]. 生物技术通报, 2022, 38(12): 204-213.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0330 |
Sun Y, Wang JG, Zang DD, et al. Transcriptome analysis of Lonicera caerulea fruits at different developmental stages[J]. Biotechnol Bull, 2022, 38(12): 204-213. | |
[13] | Ma YJ, Duan HR, Zhang F, et al. Transcriptomic analysis of Lycium ruthenicum Murr. during fruit ripening provides insight into structural and regulatory genes in the anthocyanin biosynthetic pathway[J]. PLoS One, 2018, 13(12): e0208627. |
[14] | Zong Y, Zhu XB, Liu ZG, et al. Functional MYB transcription factor encoding gene AN2 is associated with anthocyanin biosynthesis in Lycium ruthenicum Murray[J]. BMC Plant Biol, 2019, 19(1): 169. |
[15] | Bao XM, Gan XL, Fan GH, et al. Transcriptome analysis identifies key genes involved in anthocyanin biosynthesis in black and purple fruits(Lycium ruthenicum Murr. L)[J]. Biotechnol Biotechnol Equip, 2022, 36(1): 553-560. |
[16] |
郭嫒, 姜牧炎, 哈力马提·巴合太力, 等. 黑果枸杞茎叶响应NaCl胁迫合成花色苷的转录组学分析[J]. 生物技术通报, 2022, 38(10): 173-183.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1576 |
Guo A, Jiang MY, HaLi-mati B, et al. Transcriptome analysis of Lycium ruthenicum Murr. shoots in anthocyanin biosynthesis response to salt stress[J]. Biotechnol Bull, 2022, 38(10): 173-183. | |
[17] | Wang J, Jiang MY, Nie ZX, et al. ABA participates in salt stress-induced anthocyanin accumulation by stimulating the expression of LrMYB1 in Lycium ruthenicum Murr.[J]. Plant Cell Tissue Organ Cult, 2022, 151(1): 11-21. |
[18] | Li G, Zhao JH, Qin BB, et al. ABA mediates development-dependent anthocyanin biosynthesis and fruit coloration in Lycium plants[J]. BMC Plant Biol, 2019, 19(1): 317. |
[19] | Zeng SH, Wu M, Zou CY, et al. Comparative analysis of anthocyanin biosynthesis during fruit development in two Lycium species[J]. Physiol Plant, 2014, 150(4): 505-516. |
[20] |
Lotkowska ME, Tohge T, Fernie AR, et al. The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress[J]. Plant Physiol, 2015, 169(3): 1862-1880.
doi: 10.1104/pp.15.00605 pmid: 26378103 |
[21] | Zhang SY, Ren YS, Zhao QY, et al. Drought-induced CsMYB6 interacts with CsbHLH111 to regulate anthocyanin biosynthesis in Chaenomeles speciosa[J]. Physiol Plant, 2023, 175(1): e13859. |
[22] | Sun QG, Jiang SH, Zhang TL, et al. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11[J]. Plant Sci, 2019, 289: 110286. |
[23] | 王会良, 何华平, 龚林忠, 等. 果树中花青苷合成研究进展[J]. 湖北农业科学, 2013, 52(20): 4857-4861. |
Wang HL, He HP, Gong LZ, et al. Advances on the research of anthocyanin synthesis in fruit trees[J]. Hubei Agric Sci, 2013, 52(20): 4857-4861. | |
[24] | 孟小伟, 牛赟, 马彦军. 黑果枸杞果实发育过程中转录组测序分析[J]. 中南林业科技大学学报, 2020, 40(9): 147-155. |
Meng XW, Niu Y, Ma YJ. Transcriptome sequencing analysis of development of Lycium ruthenicum fruits[J]. J Cent South Univ For Technol, 2020, 40(9): 147-155. | |
[25] | 张明菊, 朱莉, 夏启中. 植物激素对胁迫反应调控的研究进展[J]. 湖北大学学报: 自然科学版, 2021, 43(3): 242-253, 263. |
Zhang MJ, Zhu L, Xia QZ. Research progress on the regulation of plant hormones to stress responses[J]. J Hubei Univ Nat Sci, 2021, 43(3): 242-253, 263. | |
[26] | Han TY, Wu WL, Li WL. Transcriptome analysis revealed the mechanism by which exogenous ABA increases anthocyanins in blueberry fruit during veraison[J]. Front Plant Sci, 2021, 12: 758215. |
[27] | Qu SS, Wang G, Li MM, et al. LcNAC90 transcription factor regulates biosynthesis of anthocyanin in harvested litchi in response to ABA and GA3[J]. Postharvest Biol Technol, 2022, 194: 112109. |
[28] | Peng ZH, Han CY, Yuan LB, et al. Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings[J]. J Integr Plant Biol, 2011, 53(8): 632-640. |
[29] | Shen SL, Hu XL, Cheng J, et al. PsbZIP1 and PsbZIP10 induce anthocyanin synthesis in plums(Prunus salicina cv. Taoxingli)via PsUFGT by methyl salicylate treatment during postharvest[J]. Postharvest Biol Technol, 2023, 203: 112396. |
[30] | Kou YD, Ren JP, Ma YJ, et al. Effects of exogenous substances treatment on fruit quality and pericarp anthocyanin metabolism of peach[J]. Agronomy, 2023, 13(6): 1489. |
[31] | An JP, Zhang XW, Liu YJ, et al. ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple[J]. J Exp Bot, 2021, 72(4): 1460-1472. |
[32] |
Jia HF, Jiu ST, Zhang C, et al. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor[J]. Plant Biotechnol J, 2016, 14(10): 2045-2065.
doi: 10.1111/pbi.12563 pmid: 27005823 |
[33] | Samkumar A, Jones D, Karppinen K, et al. Red and blue light treatments of ripening bilberry fruits reveal differences in signalling through abscisic acid-regulated anthocyanin biosynthesis[J]. Plant Cell Environ, 2021, 44(10): 3227-3245. |
[34] | Meng R, Zhang J, An L, et al. Expression profiling of several gene families involved in anthocyanin biosynthesis in apple(Malus domestica Borkh.)skin during fruit development[J]. J Plant Growth Regul, 2016, 35(2): 449-464. |
[35] |
Zhang YQ, Liu ZJ, Liu JP, et al. GA-DELLA pathway is involved in regulation of nitrogen deficiency-induced anthocyanin accumulation[J]. Plant Cell Rep, 2017, 36(4): 557-569.
doi: 10.1007/s00299-017-2102-7 pmid: 28275852 |
[36] | An JP, Xu RR, Liu X, et al. Jasmonate induces biosynthesis of anthocyanin and proanthocyanidin in apple by mediating the JAZ1-TRB1-MYB9 complex[J]. Plant J, 2021, 106(5): 1414-1430. |
[1] | 周麟, 黄顺满, 苏文坤, 姚响, 屈燕. 滇山茶bHLH基因家族鉴定及花色形成相关基因筛选[J]. 生物技术通报, 2024, 40(8): 142-151. |
[2] | 王睿, 戚继. 整合组织学图像信息增强空间转录组细胞聚类的分辨率[J]. 生物技术通报, 2024, 40(8): 39-46. |
[3] | 高萌萌, 赵天宇, 焦馨悦, 林春晶, 关哲允, 丁孝羊, 孙妍妍, 张春宝. 大豆细胞质雄性不育系及其恢复系的比较转录组分析[J]. 生物技术通报, 2024, 40(7): 137-149. |
[4] | 廖杨梅, 赵国春, 翁学煌, 贾黎明, 陈仲. 无患子雄性不育品种‘琦蕊’不同发育时期雄花转录组分析[J]. 生物技术通报, 2024, 40(7): 197-206. |
[5] | 秦健, 李振月, 何浪, 李俊玲, 张昊, 杜荣. 肌源性细胞分化的单细胞转录谱变化及细胞间通讯分析[J]. 生物技术通报, 2024, 40(6): 330-342. |
[6] | 白志元, 徐菲, 杨午, 王明贵, 杨玉花, 张海平, 张瑞军. 大豆细胞质雄性不育弱恢复型杂种F1育性转变的转录组分析[J]. 生物技术通报, 2024, 40(6): 134-142. |
[7] | 刘蓉, 田闵玉, 李光泽, 谭成方, 阮颖, 刘春林. 甘蓝型油菜REVEILLE家族鉴定及诱导表达分析[J]. 生物技术通报, 2024, 40(6): 161-171. |
[8] | 王玉书, 赵琳琳, 赵爽, 胡琦, 白慧霞, 王欢, 曹业萍, 范震宇. 大白菜BrCYP83B1基因的克隆及表达分析[J]. 生物技术通报, 2024, 40(6): 152-160. |
[9] | 吴迪, 游小凤, 郑亦铮, 林楠, 张燕燕, 魏艺聪. 草珊瑚中类胡萝卜素合成的内源激素调控机制分析[J]. 生物技术通报, 2024, 40(5): 203-214. |
[10] | 陈强, 黄馨慧, 张峥, 张冲, 柳叶飞. 褪黑素对薄皮甜瓜采后软化和乙烯合成的影响[J]. 生物技术通报, 2024, 40(4): 139-147. |
[11] | 郭纯, 宋桂梅, 闫艳, 邸鹏, 王英平. 西洋参bZIP基因家族全基因组鉴定和表达分析[J]. 生物技术通报, 2024, 40(4): 167-178. |
[12] | 钟匀, 林春, 刘正杰, 董陈文华, 毛自朝, 李兴玉. 芦笋皂苷合成相关糖基转移酶基因克隆及原核表达分析[J]. 生物技术通报, 2024, 40(4): 255-263. |
[13] | 杨淇, 魏子迪, 宋娟, 童堃, 杨柳, 王佳涵, 刘海燕, 栾维江, 马轩. 水稻组蛋白H1三突变体的创建和转录组学分析[J]. 生物技术通报, 2024, 40(4): 85-96. |
[14] | 谢倩, 江来, 贺进, 刘玲玲, 丁明月, 陈清西. 不同鲜食品质橄榄果实转录组测序及酚类代谢途径相关调控基因挖掘[J]. 生物技术通报, 2024, 40(3): 215-228. |
[15] | 龚丽丽, 余花, 杨杰, 陈天池, 赵双滢, 吴月燕. 葡萄CYP707A基因家族的鉴定及对果实成熟的功能验证[J]. 生物技术通报, 2024, 40(2): 160-171. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||