生物技术通报 ›› 2025, Vol. 41 ›› Issue (6): 71-86.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0733
李晨莹1,2(
), 孔大帅2, 李若楠2,3, 张玉波2, 阎萍2,4, 李奎2, 孔思远2(
)
收稿日期:2024-07-12
出版日期:2025-06-26
发布日期:2025-06-30
通讯作者:
孔思远,男,博士,副研究员,研究方向 :动物基因组学和分子遗传育种;E-mail: kongsiyuan@caas.cn作者简介:李晨莹,女,硕士研究生,研究方向 :动物遗传育种与繁殖;E-mail: lcy1998102022@163.com基金资助:
LI Chen-ying1,2(
), KONG Da-shuai2, LI Ruo-nan2,3, ZHANG Yu-bo2, YAN ping2,4, LI Kui2, KONG Si-yuan2(
)
Received:2024-07-12
Published:2025-06-26
Online:2025-06-30
摘要:
全球人口的增长导致对畜禽产品的需求增加,同时气候变化和环境压力对畜禽生存和生产构成挑战,国内自主选育的核心畜禽品种较为缺乏,“生物育种”成为了农业新质生产力的“国家战略”。因此,需要培育出性状优良及适应性强的畜禽新品种。组学与分子生物学技术的不断发展促进了基因组学、转录组学、表观遗传学、三维基因组学、宏基因组学以及单细胞等多组学技术手段的开发和改良,并成功结合应用到全基因组关联分析、标记辅助选择、全基因组选择等畜禽生物育种方法中。随着前沿组学技术的创新和发展,畜禽生物性状功能发生的潜在分子遗传机制也实现了解析。为了更好地利用基因组‒多组学育种技术和理念助力畜禽生物育种,本文对主要的畜禽生物性状形成和分子育种相关组学技术的内容和特点进行总结,阐述了经典组学技术的原理和应用,主要涉及基因组、转录组、蛋白组等。同时也指出这些技术的局限性,由此介绍了一系列新型组学技术,包括三维基因组学技术和肠道微生物组学技术以及单细胞组学技术。并归纳了“基因组‒多组学”育种理念在畜禽重要经济性状解析和分子生物育种研究中的应用,同时概述了这些组学技术的应用场景及存在的挑战。最后,探讨了多组学技术的综合应用,并对未来组学技术的发展趋势进行了展望。本文旨在为畜禽重要性状的研究及育种领域的发展提供新的参考,推动畜禽育种向更精准、更高效、更经济的方向发展。
李晨莹, 孔大帅, 李若楠, 张玉波, 阎萍, 李奎, 孔思远. 前沿组学技术创新助力畜禽生物育种[J]. 生物技术通报, 2025, 41(6): 71-86.
LI Chen-ying, KONG Da-shuai, LI Ruo-nan, ZHANG Yu-bo, YAN ping, LI Kui, KONG Si-yuan. Cutting-edge Omics Technology Innovations Empower Livestock and Poultry Biological Breeding[J]. Biotechnology Bulletin, 2025, 41(6): 71-86.
分类 Classification | 技术 Technology | 关键流程 Process | 优势和局限性 Advantages and limitations | 应用场景 Applications | 参考文献Reference |
|---|---|---|---|---|---|
经典的组学技术 Classical omics techniques | Sanger sequencing | PCR扩增‒PCR纯化‒循环测序‒测序纯化‒毛细管电泳‒数据分析 | 优势:读取速度快、高精确度,成本相对很低 局限:无法连续测序、测序长度受限制 | 基因突变检测、基因编辑、微生物鉴定与分型 | [ |
| Next-generation sequencing | 核酸提取‒文库制备‒上机测序‒数据分析 | 优势:通量高、速度快、测序成本低、敏感性高、所需样本量少 局限:成本高、操作复杂、检测周期长 | 全基因组测序与全外显子测序、基因变异、基因分型等 | [ | |
| RNA-seq | 总RNA提取‒rRNA去除‒双链合成‒末端修复‒接头连接‒文库扩增‒测序 | 优势:定量更准确、可重复性更高、检测范围更广、分析更可靠 局限:限制其他RNA的读数以及其他RNA表达水平的准确性 | 基因表达量测量与差异表达分析、新转录本、剪接形式和基因的发现、非编码RNA研究、生物标志物发现等 | [ | |
| ChIP-seq | 甲醛交联‒DNA片段化‒染色质免疫沉淀‒捕获DNA‒蛋白质复合物‒纯化DNA‒测序 | 优势:大量细胞起始量,挖掘转录因子、蛋白因子全基因组结合位点 局限:该技术需要高度特异性抗体、甲醛固定可能是暂时的,甚至是非特异的,可能导致相邻的蛋白形成假阳性信号 | 转录因子(TF)结合位点和靶基因的全基因组鉴定、组蛋白修饰的全基因组检测、蛋白质- DNA互作研究 | [ | |
| 微生物组16S rDNA测序 | 细菌基因组提取‒特异引物扩增16S rDNA序列‒纯化PCR产物‒测序获得16S rDNA序列 | 优势:具有良好的进化保守性、操作速度快、操作简单、成本低 局限:可以鉴定到属水平,无法准确到所有物种或亚种水平 | 微生物群落的多样性、病原菌检测与鉴定、生态系统功能研究 | [ | |
| 宏基因组二代鸟枪法测序 Shotgun sequencing | 将DNA序列随机分解成许多小片段‒通过寻找重叠区域来重新组装序列 | 优势:速度快,简单易行,成本较低 局限:会形成大量冗余序列,导致基因组信息的缺失 | 分析微生物群落的结构、环境微生物群落研究、功能基因发掘、医学诊断与研究、生态与环境保护 | [ | |
新兴的组学技术 Emerging omics technologies | 三代单分子测序 Single-molecule sequencing | DNA片段化‒发夹连接‒获得文库‒文库测序 | 优势:可以直接进行 cDNA 分析、无需逆转录、测序速度极快 局限:单读长错误率高增加测序成本 | 基因组测序、甲基化研究、突变鉴定 | [ |
| CUT&Tag | 提取细胞核‒抗体结合‒Tn5结合‒回收DNA‒PCR扩增‒文库测序 | 优势:背景噪声低、细胞起始量低、信噪比和重复性较好 局限:细胞数量要求较高、实验耗时长、数据的重复性较差 | 蛋白质与DNA互作研究、鉴定转录因子在全基因组上的结合位点、超级增强子鉴定 | [ | |
| Hi-C | 甲醛交联‒限制酶切‒末端补平‒邻近连接‒超声破碎‒biotin富集‒建库测序 | 优势:高通量测序、Hi-C可以展现出,整个染色体all-to-all的互作关系 局限:实验成本高、数据噪声大、实验过程繁琐 | 研究染色体片段之间的相互作用、基因组组装、单体型图谱构建、辅助宏基因组组装、与其他数据进行联合分析、基因调控网络、表观遗传网络 | [ | |
| In situ Hi-C | 交联‒酶切‒邻近连接‒超声破碎‒生物素下拉‒建库测序 | 优势:高效、方便、比对率高和低成本 局限:暂无法进行单细胞水平 | 疾病相关基因定位、基因表达调控、识别染色体结构变异、基因组进化与比较基因组学、药物靶点发现 | [ | |
| In situ exo-Hi-C | 交联‒酶切‒邻近连接‒线性DNA消除‒超声破碎‒ 生物素下拉‒建库测序 | 优势:高效、方便、噪声低、比对率高和低成本 局限:暂无法进行单细胞水平 | 低细胞起始量、下机测序数据少,噪声低,需求有效互作得率高。畜禽发育机制解析,功能基因挖掘等农业、医学应用 | [ | |
| ChIA-PET | 甲醛交联‒DNA片段化‒用特异性蛋白抗体富集DNA和蛋白复合物‒生物素下拉‒限制性内切酶消化‒去除蛋白质‒固定化PET序列‒上机测序 | 优势:高效、高分辨率、应用范围广泛 局限:细胞起始量要求更高、操作相对复杂 | 基因转录调控、疾病发生机制、生长发育、基因组功能研究、药物研发等 | [ | |
| GutHi-C | 微生物分离提纯‒交联裂解‒酶切‒末端补平‒纯化‒片段化‒接头连接‒文库扩增 | 优势:效率高,便于操作,成本低,数据优 局限:如手动裂解破壁步骤需要熟手操作 | 广泛用于畜禽肠道微生物建库 | [ | |
高精度的组学技术 Highly accurate omics technology | scRNA-seq | 细胞收集‒分选捕获单个细胞‒细胞裂解‒提取DNA‒合成cDNA‒扩增‒测序 | 优势:高分辨率、可探索未知的细胞类型 局限:不同类型的细胞在解离效率上存在差异、对细胞悬液质量的高要求、技术复杂 | 单细胞分辨率揭示胚胎发育过程、基因表达的动态变化、微生物群落 | [ |
| scATAC-seq | 细胞收集‒分离单细胞‒裂解‒转座‒扩增酶切割‒扩增‒测序 | 优势:高通量、低成本、高分辨率 局限:技术涉及多个步骤,对实验技术和数据分析要求较高、数据解读和结果分析具有挑战性、不同平台的实验方法和数据分析流程可能存在差异,影响结果的通用性和可比性 | 单细胞分辨率揭示胚胎发育过程、肿瘤生物学、免疫细胞的基因表达调控、细胞间互作 | [ | |
| snHi-C | 细胞核分离‒交联‒酶切‒末端修复‒连接‒纯化‒建库‒测序 | 优势:分辨率较高、灵敏度高 局限:成本高、实验复杂 | 单细胞分辨率揭示染色质三维结构、调控网络 | [ | |
| Dip-C | 细胞分离裂解‒交联固定‒染色质片段化‒连接‒标记‒ 构建文库‒测序 | 优势:高分辨率、可以在单细胞水平上进行基因组三维结构的研究 局限:成本高、实验复杂 | 单细胞分辨率揭示基因组三维结构的动态变化、染色质互作、调控网络 | [ | |
| scNanoHi-C | 交联固定‒Tn5片段化‒连接-扩增-构建文库‒三代单分子Nanopore测序 | 优势:高阶连接子的效率更高、在单个细胞中检测到更多的接触、捕获更多的杂合SNP位点进行单倍型分析 局限:Nanopore错误率高一些 | 单细胞分辨率揭示染色质高维结构、染色质高阶互作和调控网络 | [ | |
| MUSIC | 分离细胞核‒标记同一细胞核中的所有RNA和片段化DNA‒将RNA和DNA接头连接到RNA和DNA片段上‒构建单个测序文库 | 优势:分辨率高、能够同时分析单个细胞核内的多重染色质相互作用、基因表达和RNA-染色质关联,提供丰富的单细胞多组学信息 局限:成本相对较高 | 同时检测单细胞染色质三维结构和基因表达的动态变化、基因表达以及RNA-染色质关联的差异 | [ |
表1 前沿多组学重要代表技术、优势、局限性和应用场景
Table 1 Key representative technologies of cutting-edge multi-omics technologies
分类 Classification | 技术 Technology | 关键流程 Process | 优势和局限性 Advantages and limitations | 应用场景 Applications | 参考文献Reference |
|---|---|---|---|---|---|
经典的组学技术 Classical omics techniques | Sanger sequencing | PCR扩增‒PCR纯化‒循环测序‒测序纯化‒毛细管电泳‒数据分析 | 优势:读取速度快、高精确度,成本相对很低 局限:无法连续测序、测序长度受限制 | 基因突变检测、基因编辑、微生物鉴定与分型 | [ |
| Next-generation sequencing | 核酸提取‒文库制备‒上机测序‒数据分析 | 优势:通量高、速度快、测序成本低、敏感性高、所需样本量少 局限:成本高、操作复杂、检测周期长 | 全基因组测序与全外显子测序、基因变异、基因分型等 | [ | |
| RNA-seq | 总RNA提取‒rRNA去除‒双链合成‒末端修复‒接头连接‒文库扩增‒测序 | 优势:定量更准确、可重复性更高、检测范围更广、分析更可靠 局限:限制其他RNA的读数以及其他RNA表达水平的准确性 | 基因表达量测量与差异表达分析、新转录本、剪接形式和基因的发现、非编码RNA研究、生物标志物发现等 | [ | |
| ChIP-seq | 甲醛交联‒DNA片段化‒染色质免疫沉淀‒捕获DNA‒蛋白质复合物‒纯化DNA‒测序 | 优势:大量细胞起始量,挖掘转录因子、蛋白因子全基因组结合位点 局限:该技术需要高度特异性抗体、甲醛固定可能是暂时的,甚至是非特异的,可能导致相邻的蛋白形成假阳性信号 | 转录因子(TF)结合位点和靶基因的全基因组鉴定、组蛋白修饰的全基因组检测、蛋白质- DNA互作研究 | [ | |
| 微生物组16S rDNA测序 | 细菌基因组提取‒特异引物扩增16S rDNA序列‒纯化PCR产物‒测序获得16S rDNA序列 | 优势:具有良好的进化保守性、操作速度快、操作简单、成本低 局限:可以鉴定到属水平,无法准确到所有物种或亚种水平 | 微生物群落的多样性、病原菌检测与鉴定、生态系统功能研究 | [ | |
| 宏基因组二代鸟枪法测序 Shotgun sequencing | 将DNA序列随机分解成许多小片段‒通过寻找重叠区域来重新组装序列 | 优势:速度快,简单易行,成本较低 局限:会形成大量冗余序列,导致基因组信息的缺失 | 分析微生物群落的结构、环境微生物群落研究、功能基因发掘、医学诊断与研究、生态与环境保护 | [ | |
新兴的组学技术 Emerging omics technologies | 三代单分子测序 Single-molecule sequencing | DNA片段化‒发夹连接‒获得文库‒文库测序 | 优势:可以直接进行 cDNA 分析、无需逆转录、测序速度极快 局限:单读长错误率高增加测序成本 | 基因组测序、甲基化研究、突变鉴定 | [ |
| CUT&Tag | 提取细胞核‒抗体结合‒Tn5结合‒回收DNA‒PCR扩增‒文库测序 | 优势:背景噪声低、细胞起始量低、信噪比和重复性较好 局限:细胞数量要求较高、实验耗时长、数据的重复性较差 | 蛋白质与DNA互作研究、鉴定转录因子在全基因组上的结合位点、超级增强子鉴定 | [ | |
| Hi-C | 甲醛交联‒限制酶切‒末端补平‒邻近连接‒超声破碎‒biotin富集‒建库测序 | 优势:高通量测序、Hi-C可以展现出,整个染色体all-to-all的互作关系 局限:实验成本高、数据噪声大、实验过程繁琐 | 研究染色体片段之间的相互作用、基因组组装、单体型图谱构建、辅助宏基因组组装、与其他数据进行联合分析、基因调控网络、表观遗传网络 | [ | |
| In situ Hi-C | 交联‒酶切‒邻近连接‒超声破碎‒生物素下拉‒建库测序 | 优势:高效、方便、比对率高和低成本 局限:暂无法进行单细胞水平 | 疾病相关基因定位、基因表达调控、识别染色体结构变异、基因组进化与比较基因组学、药物靶点发现 | [ | |
| In situ exo-Hi-C | 交联‒酶切‒邻近连接‒线性DNA消除‒超声破碎‒ 生物素下拉‒建库测序 | 优势:高效、方便、噪声低、比对率高和低成本 局限:暂无法进行单细胞水平 | 低细胞起始量、下机测序数据少,噪声低,需求有效互作得率高。畜禽发育机制解析,功能基因挖掘等农业、医学应用 | [ | |
| ChIA-PET | 甲醛交联‒DNA片段化‒用特异性蛋白抗体富集DNA和蛋白复合物‒生物素下拉‒限制性内切酶消化‒去除蛋白质‒固定化PET序列‒上机测序 | 优势:高效、高分辨率、应用范围广泛 局限:细胞起始量要求更高、操作相对复杂 | 基因转录调控、疾病发生机制、生长发育、基因组功能研究、药物研发等 | [ | |
| GutHi-C | 微生物分离提纯‒交联裂解‒酶切‒末端补平‒纯化‒片段化‒接头连接‒文库扩增 | 优势:效率高,便于操作,成本低,数据优 局限:如手动裂解破壁步骤需要熟手操作 | 广泛用于畜禽肠道微生物建库 | [ | |
高精度的组学技术 Highly accurate omics technology | scRNA-seq | 细胞收集‒分选捕获单个细胞‒细胞裂解‒提取DNA‒合成cDNA‒扩增‒测序 | 优势:高分辨率、可探索未知的细胞类型 局限:不同类型的细胞在解离效率上存在差异、对细胞悬液质量的高要求、技术复杂 | 单细胞分辨率揭示胚胎发育过程、基因表达的动态变化、微生物群落 | [ |
| scATAC-seq | 细胞收集‒分离单细胞‒裂解‒转座‒扩增酶切割‒扩增‒测序 | 优势:高通量、低成本、高分辨率 局限:技术涉及多个步骤,对实验技术和数据分析要求较高、数据解读和结果分析具有挑战性、不同平台的实验方法和数据分析流程可能存在差异,影响结果的通用性和可比性 | 单细胞分辨率揭示胚胎发育过程、肿瘤生物学、免疫细胞的基因表达调控、细胞间互作 | [ | |
| snHi-C | 细胞核分离‒交联‒酶切‒末端修复‒连接‒纯化‒建库‒测序 | 优势:分辨率较高、灵敏度高 局限:成本高、实验复杂 | 单细胞分辨率揭示染色质三维结构、调控网络 | [ | |
| Dip-C | 细胞分离裂解‒交联固定‒染色质片段化‒连接‒标记‒ 构建文库‒测序 | 优势:高分辨率、可以在单细胞水平上进行基因组三维结构的研究 局限:成本高、实验复杂 | 单细胞分辨率揭示基因组三维结构的动态变化、染色质互作、调控网络 | [ | |
| scNanoHi-C | 交联固定‒Tn5片段化‒连接-扩增-构建文库‒三代单分子Nanopore测序 | 优势:高阶连接子的效率更高、在单个细胞中检测到更多的接触、捕获更多的杂合SNP位点进行单倍型分析 局限:Nanopore错误率高一些 | 单细胞分辨率揭示染色质高维结构、染色质高阶互作和调控网络 | [ | |
| MUSIC | 分离细胞核‒标记同一细胞核中的所有RNA和片段化DNA‒将RNA和DNA接头连接到RNA和DNA片段上‒构建单个测序文库 | 优势:分辨率高、能够同时分析单个细胞核内的多重染色质相互作用、基因表达和RNA-染色质关联,提供丰富的单细胞多组学信息 局限:成本相对较高 | 同时检测单细胞染色质三维结构和基因表达的动态变化、基因表达以及RNA-染色质关联的差异 | [ |
| 1 | Xu P, Cui LL, Huang T, et al. Genome-wide identification of quantitative trait transcripts for blood traits in the liver samples of a White Duroc × Erhualian F2 pig resource population [J]. Physiol Genomics, 2016, 48(8): 573-579. |
| 2 | Powder KE. Quantitative trait loci (QTL) mapping [J]. Methods Mol Biol, 2020, 2082: 211-229. |
| 3 | Tang MS, Wang T, Zhang XF. A review of SNP heritability estimation methods [J]. Brief Bioinform, 2022, 23(3): bbac067. |
| 4 | Bruce Walsh J. Genomic selection signatures and animal breeding [J]. J Anim Breed Genet, 2021, 138(1): 1-3. |
| 5 | Platten JD, Cobb JN, Zantua RE. Criteria for evaluating molecular markers: comprehensive quality metrics to improve marker-assisted selection [J]. PLoS One, 2019, 14(1): e0210529. |
| 6 | Anand A, Subramanian M, Kar D. Breeding techniques to dispense higher genetic gains [J]. Front Plant Sci, 2023, 13: 1076094. |
| 7 | Khan MZ, Chen WT, Huang BJ, et al. Advancements in genetic marker exploration for livestock vertebral traits with a focus on China [J]. Animals, 2024, 14(4): 594. |
| 8 | Raina VS, Kour A, Chakravarty AK, et al. Marker-assisted selection vis-à-vis bull fertility: coming full circle-a review [J]. Mol Biol Rep, 2020, 47(11): 9123-9133. |
| 9 | Gupta D, Bhattacharjee O, Mandal D, et al. CRISPR-Cas9 system: a new-fangled dawn in gene editing [J]. Life Sci, 2019, 232: 116636. |
| 10 | Jain S, Shukla S, Yang C, et al. TALEN outperforms Cas9 in editing heterochromatin target sites [J]. Nat Commun, 2021, 12(1): 606. |
| 11 | Li YF, Guha CD, Asp P, et al. Resolution of hepatic fibrosis after ZFN-mediated gene editing in the PiZ mouse model of human α1-antitrypsin deficiency [J]. Hepatol Commun, 2023, 7(3): e0070. |
| 12 | Lanigan TM, Kopera HC, Saunders TL. Principles of genetic engineering [J]. Genes, 2020, 11(3): 291. |
| 13 | Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors [J]. Proc Natl Acad Sci U S A, 1977, 74(12): 5463-5467. |
| 14 | Rodriguez R, Krishnan Y. The chemistry of next-generation sequencing [J]. Nat Biotechnol, 2023, 41(12): 1709-1715. |
| 15 | Scarano C, Veneruso I, De Simone RR, et al. The third-generation sequencing challenge: novel insights for the omic sciences [J]. Biomolecules, 2024, 14(5): 568. |
| 16 | Zhang Y, Li GL. Advances in technologies for 3D genomics research [J]. Sci China Life Sci, 2020, 63(6): 811-824. |
| 17 | Wishart DS. Metabolomics for investigating physiological and pathophysiological processes [J]. Physiol Rev, 2019, 99(4): 1819-1875. |
| 18 | Rozanova S, Barkovits K, Nikolov M, et al. Quantitative mass spectrometry-based proteomics: an overview [J]. Methods Mol Biol, 2021, 2228: 85-116. |
| 19 | Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics [J]. Nat Rev Mol Cell Biol, 2022, 23(6): 389-406. |
| 20 | Chakraborty D, Sharma N, Kour S, et al. Applications of omics technology for livestock selection and improvement [J]. Front Genet, 2022, 13: 774113. |
| 21 | Johnsson M. Genomics in animal breeding from the perspectives of matrices and molecules [J]. Hereditas, 2023, 160(1): 20. |
| 22 | Song XY, Li XM, Liu X, et al. Copy number variation of the ZNF679 gene in cattle and its association analysis with growth traits [J]. Anim Biotechnol, 2023, 34(9): 4680-4686. |
| 23 | Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps [J]. Genetics, 2001, 157(4): 1819-1829. |
| 24 | Xu YB, Liu XG, Fu JJ, et al. Enhancing genetic gain through genomic selection: from livestock to plants [J]. Plant Commun, 2019, 1(1): 100005. |
| 25 | Dekkers JCM, Hospital F. The use of molecular genetics in the improvement of agricultural populations [J]. Nat Rev Genet, 2002, 3(1): 22-32. |
| 26 | Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes [J]. Nat Rev Genet, 2009, 10(6): 381-391. |
| 27 | Lopes R, Agami R, Korkmaz G. GRO-seq, A tool for identification of transcripts regulating gene expression [J]. Methods Mol Biol, 2017, 1543: 45-55. |
| 28 | Rao A, Barkley D, França GS, et al. Exploring tissue architecture using spatial transcriptomics [J]. Nature, 2021, 596(7871): 211-220. |
| 29 | Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis [J]. Wiley Interdiscip Rev RNA, 2017, 8(1): 10.1002/wrna.1364. |
| 30 | Jiang ZH, Zhou X, Li R, et al. Whole transcriptome analysis with sequencing: methods, challenges and potential solutions [J]. Cell Mol Life Sci, 2015, 72(18): 3425-3439. |
| 31 | David Allis C, Jenuwein T. The molecular hallmarks of epigenetic control [J]. Nat Rev Genet, 2016, 17(8): 487-500. |
| 32 | Gopinathan G, Diekwisch TGH. Epigenetics and early development [J]. J Dev Biol, 2022, 10(2): 26. |
| 33 | Li YY. Modern epigenetics methods in biological research [J]. Methods, 2021, 187: 104-113. |
| 34 | Zhang YJ, Sun ZX, Jia JQ, et al. Overview of histone modification [J]. Adv Exp Med Biol, 2021, 1283: 1-16. |
| 35 | Peixoto P, Cartron PF, Serandour AA, et al. From 1957 to nowadays: a brief history of epigenetics [J]. Int J Mol Sci, 2020, 21(20): 7571. |
| 36 | Park PJ. ChIP-seq: advantages and challenges of a maturing technology [J]. Nat Rev Genet, 2009, 10(10): 669-680. |
| 37 | Nakato R, Sakata T. Methods for ChIP-seq analysis: a practical workflow and advanced applications [J]. Methods, 2021, 187: 44-53. |
| 38 | Kaya-Okur HS, Wu SJ, Codomo CA, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells [J]. Nat Commun, 2019, 10(1): 1930. |
| 39 | Henikoff S, Henikoff JG, Kaya-Okur HS, et al. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation [J]. eLife, 2020, 9: e63274. |
| 40 | Fu ZJ, Jiang SJ, Sun YW, et al. Cut&tag: a powerful epigenetic tool for chromatin profiling [J]. Epigenetics, 2024, 19(1): 2293411. |
| 41 | Ding RR, Zhuang ZW, Qiu YB, et al. Identify known and novel candidate genes associated with backfat thickness in Duroc pigs by large-scale genome-wide association analysis [J]. J Anim Sci, 2022, 100(2): skac012. |
| 42 | Xiong XW, Yang H, Yang B, et al. Identification of quantitative trait transcripts for growth traits in the large scales of liver and muscle samples [J]. Physiol Genomics, 2015, 47(7): 274-280. |
| 43 | García-Ruiz A, Cole JB, VanRaden PM, et al. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection [J]. Proc Natl Acad Sci U S A, 2016, 113(28): E3995-E4004. |
| 44 | Tan XD, Liu RR, Li W, et al. Assessment the effect of genomic selection and detection of selective signature in broilers [J]. Poult Sci, 2022, 101(6): 101856. |
| 45 | Wu GF, Ma L, Wang L, et al. Analysis of transcriptome and miRNAome in the muscle of bamei pigs at different developmental stages [J]. Animals, 2020, 10(7): 1198. |
| 46 | Zhang T, Chen L, Han KP, et al. Transcriptome analysis of ovary in relatively greater and lesser egg producing Jinghai Yellow Chicken [J]. Anim Reprod Sci, 2019, 208: 106114. |
| 47 | Tao Z, Song W, Zhu C, et al. Comparative transcriptomic analysis of high and low egg-producing duck ovaries [J]. Poult Sci, 2017, 96(12): 4378-4388. |
| 48 | An JH, Qin JZ, Wan Y, et al. Histone lysine methylation exhibits a distinct distribution during spermatogenesis in pigs [J]. Theriogenology, 2015, 84(9): 1455-1462. |
| 49 | Zhao YX, Hou Y, Xu YY, et al. A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome [J]. Nat Commun, 2021, 12(1): 2217. |
| 50 | Li MX, Liu Q, Xie S, et al. LncRNA TCONS00323213 promotes myogenic differentiation by interacting with PKNOX2 to upregulate MyoG in porcine satellite cells [J]. Int J Mol Sci, 2023, 24(7): 6773. |
| 51 | Rhodes CT, Thompson JJ, Mitra A, et al. An epigenome atlas of neural progenitors within the embryonic mouse forebrain [J]. Nat Commun, 2022, 13(1): 4196. |
| 52 | Zhou C, Halstead MM, Bonnet-Garnier A, et al. Histone remodeling reflects conserved mechanisms of bovine and human preimplantation development [J]. EMBO Rep, 2023, 24(3): e55726. |
| 53 | Akdogan-Ozdilek B, Duval KL, Meng FW, et al. Identification of chromatin states during zebrafish gastrulation using CUT&RUN and CUT&Tag [J]. Dev Dyn, 2022, 251(4): 729-742. |
| 54 | Nakaya A, Isobe SN. Will genomic selection be a practical method for plant breeding? [J]. Ann Bot, 2012, 110(6): 1303-1316. |
| 55 | Dekker J, Rippe K, Dekker M, et al. Capturing chromosome conformation [J]. Science, 2002, 295(5558): 1306-1311. |
| 56 | Simonis M, Klous P, Splinter E, et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C) [J]. Nat Genet, 2006, 38(11): 1348-1354. |
| 57 | Belton JM, Dekker J. Chromosome conformation capture carbon copy (5C) in budding yeast [J]. Cold Spring Harb Protoc, 2015, 2015(6): 593-598. |
| 58 | Belton JM, McCord RP, Gibcus JH, et al. Hi-C: a comprehensive technique to capture the conformation of genomes [J]. Methods, 2012, 58(3): 268-276. |
| 59 | Rao SSP, Huntley MH, Durand NC, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping [J]. Cell, 2014, 159(7): 1665-1680. |
| 60 | Ma WX, Ay F, Lee C, et al. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes [J]. Nat Methods, 2015, 12(1): 71-78. |
| 61 | Schoenfelder S, Sexton T, Chakalova L, et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells [J]. Nat Genet, 2010, 42(1): 53-61. |
| 62 | Nagano T, Lubling Y, Stevens TJ, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure [J]. Nature, 2013, 502(7469): 59-64. |
| 63 | Kong S, Li Q, Zhang G, et al. Exonuclease combinations reduce noises in 3D genomics technologies [J]. Nucleic Acids Res, 2020, 48(8): e44. |
| 64 | Lee B, Wang JH, Cai LY, et al. ChIA-PIPE: a fully automated pipeline for comprehensive ChIA-PET data analysis and visualization [J]. Sci Adv, 2020, 6(28): eaay2078. |
| 65 | Wang RM, Wang YL, Zhang XY, et al. Hierarchical cooperation of transcription factors from integration analysis of DNA sequences, ChIP-Seq and ChIA-PET data [J]. BMC Genomics, 2019, 20(): 296. |
| 66 | Djekidel MN, Liang ZY, Wang Q, et al. 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process [J]. Genome Biol, 2015, 16: 288. |
| 67 | Jin L, Wang DY, Zhang JM, et al. Dynamic chromatin architecture of the porcine adipose tissues with weight gain and loss [J]. Nat Commun, 2023, 14: 3457. |
| 68 | Shao D, Yang Y, Shi S, et al. Three-dimensional organization of chicken genome provides insights into genetic adaptation to extreme environments [J]. Genes: Basel, 2022, 13(12): 2317. |
| 69 | Li J, Lin Y, Li DY, et al. Building haplotype-resolved 3D genome maps of chicken skeletal muscle [J]. Adv Sci, 2024, 11(24): e2305706. |
| 70 | Cao J, Ren R, Li X, et al. Virus infection induces immune gene activation with CTCF-anchored enhancers and chromatin interactions in pig genome [J]. Genomics Proteomics Bioinformatics. 2024, 22(5):qzae062. |
| 71 | Liu R, Li X, Zhang X, et al. Long-range interaction within the chromatin domain determines regulatory patterns in porcine skeletal muscle [J]. Genomics, 2022, 114(6):110482. |
| 72 | Kong SY, Lu YH, Tan SH, et al. Nucleosome-omics: a perspective on the epigenetic code and 3D genome landscape [J]. Genes, 2022, 13(7): 1114. |
| 73 | Suchodolski JS. Analysis of the gut microbiome in dogs and cats [J]. Vet Clin Pathol, 2022, 50(): 6-17. |
| 74 | Woo PY, Lau SP, Teng JL, et al. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories [J]. Clin Microbiol Infect, 2008, 14(10): 908-934. |
| 75 | Drancourt M, Bollet C, Carlioz A, et al. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates [J]. J Clin Microbiol, 2000, 38(10): 3623-3630. |
| 76 | Bars-Cortina D, Ramon E, Rius-Sansalvador B, et al. Comparison between 16S rRNA and shotgun sequencing in colorectal cancer, advanced colorectal lesions, and healthy human gut microbiota [J]. BMC Genomics, 2024, 25(1): 730. |
| 77 | Wang YH, Gao PW, Li CY, et al. High-fidelity gut metagenome: a new insight of identification of functional probiotics [J]. J Integr Agric, 2024. . |
| 78 | Lu YX, Yang JB, Li CY, et al. Efficient and easy-to-use capturing three-dimensional metagenome interactions with GutHi-C [J]. Imeta, 2024, 3(5): e227. |
| 79 | Liu L, Zhao X, Wang Q, et al. Prosteatotic and protective components in a unique model of fatty liver: gut microbiota and suppressed complement system [J]. Sci Rep, 2016, 6: 31763. |
| 80 | Wen K, Liu L, Zhao MM, et al. The changes in microbiotic composition of different intestinal tracts and the effects of supplemented Lactobacillus during the formation of goose fatty liver [J]. Front Microbiol, 2022, 13: 906895. |
| 81 | Zang XP, Wang WJ, Gu SC, et al. Interaction between microbes and host in sow vaginas in early pregnancy [J]. mSystems, 2023, 8(2): e0119222. |
| 82 | Jangid A, Fukuda S, Suzuki Y, et al. Shotgun metagenomic sequencing revealed the prebiotic potential of a grain-based diet in mice [J]. Sci Rep, 2022, 12(1): 6748. |
| 83 | Riiser ES, Haverkamp THA, Varadharajan S, et al. Metagenomic shotgun analyses reveal complex patterns of intra- and interspecific variation in the intestinal microbiomes of codfishes [J]. Appl Environ Microbiol, 2020, 86(6): e02788-19. |
| 84 | Bickhart DM, Kolmogorov M, Tseng E, et al. Generating lineage-resolved, complete metagenome-assembled genomes from complex microbial communities [J]. Nat Biotechnol, 2022, 40(5): 711-719. |
| 85 | Bickhart DM, Watson M, Koren S, et al. Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation [J]. Genome Biol, 2019, 20(1): 153. |
| 86 | Press M, Wiser AH, Kronenberg ZN, et al. Hi-C deconvolution of a human gut microbiome yields high-quality draft genomes and reveals plasmid-genome interactions [J]. bioRxiv, 2017, 8(3): 198713-198725. |
| 87 | Michael Janda J, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls [J]. J Clin Microbiol, 2007, 45(9): 2761-2764. |
| 88 | Lyons A, Brown J, Davenport KM. Single-cell sequencing technology in ruminant livestock: challenges and opportunities [J]. Curr Issues Mol Biol, 2024, 46(6): 5291-5306. |
| 89 | Kong SY, Huang QT, Zhang YB, et al. The future of 3D genomic technology: Precision-omics[J]. Gene Technology, 2020, 9: 155-158. |
| 90 | Li W, Lu JS, Lu P, et al. scNanoHi-C: a single-cell long-read concatemer sequencing method to reveal high-order chromatin structures within individual cells [J]. Nat Methods, 2023, 20(10): 1493-1505. |
| 91 | Wen XZ, Luo ZF, Zhao WX, et al. Single-cell multiplex chromatin and RNA interactions in ageing human brain [J]. Nature, 2024, 628: 648-656. |
| 92 | Giassetti MI, Miao DQ, Law NC, et al. ARRDC5 expression is conserved in mammalian testes and required for normal sperm morphogenesis [J]. Nat Commun, 2023, 14(1): 2111. |
| 93 | Dai MM, Zhu SF, An ZH, et al. Dissection of key factors correlating with H5N1 avian influenza virus driven inflammatory lung injury of chicken identified by single-cell analysis [J]. PLoS Pathog, 2023, 19(10): e1011685. |
| 94 | Cai S, Hu B, Wang X, et al. Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig [J]. BMC Biol, 2023, 21(1): 19. |
| 95 | Cai CC, Wan P, Wang H, et al. Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing [J]. Cell Prolif, 2023, 56(9): e13430. |
| 96 | Wang XY, Liu DL, Luo J, et al. Exploring the role of enhancer-mediated transcriptional regulation in precision biology [J]. Int J Mol Sci, 2023, 24(13): 10843. |
| [1] | 霍贯中, 张欣濡, 田士军, 李君. CRISPR/Cas12a基因编辑技术在植物中的研究进展[J]. 生物技术通报, 2025, 41(6): 1-11. |
| [2] | 周熠, 刘勇波. 基因组进化过程中的基因丢失机制与功能研究进展[J]. 生物技术通报, 2025, 41(6): 38-48. |
| [3] | 段永红, 杨欣, 于冠群, 夏俊俊, 宋陆帅, 白小东, 彭锁堂. 125份马铃薯种质资源遗传多样性及主成分分析[J]. 生物技术通报, 2025, 41(6): 130-143. |
| [4] | 安昌, 徐文波, 陆琳, 李登麟, 姚艺新, 林彦翔, 杨成梓, 秦源, 郑平. 不同产地珊瑚菜叶绿体基因组特征的差异性研究[J]. 生物技术通报, 2025, 41(6): 229-242. |
| [5] | 张慧, 卢文才, 王冬, 刘倩, 马连杰. 一株高产吲哚乙酸的Bacillus cereus YT2-1C的鉴定及促生作用[J]. 生物技术通报, 2025, 41(5): 300-309. |
| [6] | 吴泽银, 黄晨阳, 赵梦然, 张利姣, 姚方杰. 短柄白黄侧耳CCMSSC 04611基因组特异性分析[J]. 生物技术通报, 2025, 41(5): 320-332. |
| [7] | 叶柳健, 蒙健宗, 覃福方, 何双, 朱绮霞, 王小虎, 韦圣博, 周礼芹. 古茶树林菌株D2的鉴定、酶学特性及基因组学分析[J]. 生物技术通报, 2025, 41(5): 267-279. |
| [8] | 孙天国, 衣兰, 秦旭洋, 乔梦雪, 谷新颖, 韩艺, 沙伟, 张梅娟, 马天意. 大白菜DABB基因家族的全基因组鉴定及盐碱胁迫下的表达分析[J]. 生物技术通报, 2025, 41(4): 156-165. |
| [9] | 宋姝熠, 蒋开秀, 刘欢艳, 黄亚成, 刘林娅. ‘红阳’猕猴桃TCP基因家族鉴定及其在果实中的表达分析[J]. 生物技术通报, 2025, 41(3): 190-201. |
| [10] | 李斌, 苏香萍, 刘畅, 王玉兵, 张勇洪, 周超, 徐青. 玄参科植物叶绿体基因组特征及系统发育分析[J]. 生物技术通报, 2025, 41(3): 240-254. |
| [11] | 车建美, 郑雪芳, 王阶平, 陈燕萍, 陈冰星, 刘波. 一株产纤维素酶菌株的筛选、鉴定及全基因组分析[J]. 生物技术通报, 2025, 41(3): 294-307. |
| [12] | 宋英培, 王灿, 周会汶, 孔可可, 许孟歌, 王瑞凯. 基于全基因组关联分析和遗传多样性的大豆裂荚性状解析[J]. 生物技术通报, 2025, 41(2): 97-106. |
| [13] | 何财林, 卢晶, 郭会会, 李小安, 吴琪. 藜麦MADS-box基因家族的全基因组鉴定和表达分析[J]. 生物技术通报, 2025, 41(1): 157-172. |
| [14] | 张婷, 万雨欣, 徐伟慧, 王志刚, 陈文晶, 胡云龙. 一株玉米根际促生菌Leclercia adecarboxylata LN01促生效果研究及其基因组分析[J]. 生物技术通报, 2025, 41(1): 263-275. |
| [15] | 江宏燕, 陈世春, 廖姝然, 陈亭旭, 王晓庆. 曙厉蝽和益蝽线粒体基因组全序列特征及系统发育分析[J]. 生物技术通报, 2025, 41(1): 312-323. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||