生物技术通报 ›› 2025, Vol. 41 ›› Issue (3): 71-82.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0750

• 技术与方法 • 上一篇    下一篇

非编码RNA的引导RNA的设计及其应用

秦玉婷(), 潘森涛, 陈渝萍()   

  1. 南华大学药学院,衡阳 421001
  • 收稿日期:2024-08-05 出版日期:2025-03-26 发布日期:2025-03-20
  • 通讯作者: 陈渝萍,女,博士,教授,研究方向 :肝病的分子病理和治疗;E-mail: yupingc@usc.edu.cn
  • 作者简介:秦玉婷,女,硕士研究生,研究方向 :基于CRISPR/Cas的基因编辑;E-mail: 1473195274@qq.com
  • 基金资助:
    湖南省自然科学基金项目(2024JJ5342)

Design and Application of Guide RNAs for Non-coding RNAs

QIN Yu-ting(), PAN Sen-tao, CHEN Yu-ping()   

  1. School of Pharmaceutical Sciences, University of South China, Hengyang 421001
  • Received:2024-08-05 Published:2025-03-26 Online:2025-03-20

摘要:

非编码RNA(non-coding RNA, ncRNA)是指通常不编码蛋白质的功能性RNA分子,多通过调控编码基因的表达和功能发挥重要的生理作用。微小RNA(microRNA, miRNA)、环状RNA(circular RNA, circRNA)及长编码RNA(long non-coding RNA, lncRNA)是目前已知的三大类具有重要生理和病理意义的调控型ncRNA,其基因的缺失重排和表达失调与多种疾病的发生发展密切相关。成簇规律间隔短回文重复序列及相关蛋白质系统(clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins, CRISPR/Cas)是一类广泛存在于细菌和古菌中的免疫防御系统,由CRISPR相关蛋白(CRISPR-associated proteins, Cas)和引导RNA(guide RNAs, gRNA)共同组成。该系统利用gRNA引导Cas核酸酶剪切和清除外源基因,因此Cas酶对靶DNA/RNA的精准识别和有效切割是由gRNA决定的。CRISPR/Cas技术具有优异的基因组定点编辑和转录本特异性剪切能力,能精准高效地编辑、干预和检测ncRNA的异常,帮助人们成功诊治疾病。本文在总结Cas9和Cas13 gRNA的组成和设计原则的基础上,针对miRNA、circRNA及lncRNA基因和其RNA自身或RNA形成过程中产生的特殊分子特征,重点介绍针对三类ncRNA的gRNA的设计策略和敲除靶点的选择,以及Cas9和Cas13核酸酶如何在gRNA高特异性和高效率的引导下,对异常miRNA、circRNA和lncRNA进行精准检测和干预。进一步讨论3类ncRNA的gRNA设计异同点和CRISRP/Cas应用在ncRNA上所面临的挑战,并对未来精准靶向ncRNA的gRNA设计进行展望,旨在为CRISPR/Cas技术在治疗ncRNA相关疾病上的应用提供参考。

关键词: CRISPR/Cas, guide RNA, 非编码RNA, miRNAs, circRNAs, lncRNAs, 敲除靶点

Abstract:

Non-coding RNA(ncRNA) refers to functional RNA molecules that typically do not encode proteins but play important physiological roles by regulating the expression and function of coding genes. microRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNA) are currently known as the three major types of regulatory ncRNAs with important physiological and pathological significance. The loss, rearrangement, and dysregulation of their genes are closely related to the occurrence and development of various diseases. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR/Cas) are types of immune-defense systems widely existing in bacteria and archaea, consisting of CRISPR-associated proteins (Cas) and guide RNAs (gRNAs). Cas nucleases shear and remove exogenous genes, while gRNAs determine their precise recognition and effective cleavage of target DNA/RNAs. CRISPR/Cas technology has excellent capabilities of site-specific genome editing and cleavage of RNA transcripts and can precisely and efficiently edit, intervene, and detect abnormalities in these ncRNAs and thus contribute to successful diagnosis and treatment of diseases. This paper summarizes the composition and design principles of Cas9 and Cas13 gRNA and the unique molecular characteristics of miRNA, circRNA, and lncRNA genes and their respective molecular features produced by the RNA itself or during RNA formation, emphasizes the design strategies and target selection of their gRNAs, as well as how Cas9 and Cas13 nucleases can accurately detect and intervene in abnormal miRNA, circRNA, and lncRNA under the guidance of gRNA with high specificity and efficiency. The article further discusses the similarities and differences in gRNA design among three types of ncRNAs, as well as the challenges faced by CRISPR/Cas applications in ncRNAs. It also gives prospects for future gRNA designs for more accurate targeting at ncRNAs, aiming to provide some reference for the employment of CRISPR/Cas technology in managing ncRNAs-associated diseases.

Key words: CRISPR/Cas, guide RNA, non-coding RNA, miRNAs, circRNAs, lncRNAs, knockdown targets