生物技术通报 ›› 2025, Vol. 41 ›› Issue (3): 146-160.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1018
• 研究报告 • 上一篇
覃悦1,2(), 杨妍2, 张磊2, 卢丽丽2, 李先平2, 蒋伟2(
)
收稿日期:
2024-10-16
出版日期:
2025-03-26
发布日期:
2025-03-20
通讯作者:
蒋伟,女,副研究员,研究方向 :马铃薯种质资源创制;E-mail: jiangweiyaas@hotmail.com作者简介:
覃悦,男,硕士,研究实习员,研究方向 :植物保护;E-mail: 453276403@qq.com基金资助:
QIN Yue1,2(), YANG Yan2, ZHANG Lei2, LU Li-li2, LI Xian-ping2, JIANG Wei2(
)
Received:
2024-10-16
Published:
2025-03-26
Online:
2025-03-20
摘要:
目的 赤霉素氧化酶GAox包括GA20氧化酶(GA20ox)、GA2氧化酶(GA2ox)和GA3氧化酶(GA3ox),是植物体内赤霉素GA生物合成的关键调控酶,与植物的生长发育及对胁迫的响应息息相关。从二倍体和四倍体马铃薯全基因组中鉴定StGAox基因家族成员,比较分析不同倍性的马铃薯中该基因家族的进化模式,为马铃薯StGAox的基因功能研究提供线索。 方法 基于3个二倍体和3个四倍体马铃薯全基因组信息,利用生物信息学方法对StGAox基因家族进行鉴定,比较分析不同倍性的马铃薯中该家族成员的系统发育关系、基因结构、染色体定位、共线性关系、基因复制模式、亚细胞定位、顺式作用元件、匍匐茎中的表达模式。 结果 二倍体马铃薯Solanum tuberosum group Phureja DM1-3 516 R44(DM)、S. chacoense M6(M6)和S. tuberosum group Tuberosum RH89-039-16(RH)分别鉴定到35、26和56个GAox同源基因,四倍体马铃薯品种大西洋(cv. Atlantic,Atl)、合作88(cv. Cooperation-88,C88)和cv. Otava(Ot)分别鉴定到99、133和105个同源基因,在12或24或48条染色体上呈不均匀分布,其编码蛋白主要定位于细胞核、细胞骨架及叶绿体中;通过对二倍体和四倍体马铃薯、番茄和拟南芥的比较进化分析将其分为3个亚族GA20ox、GA3ox和GA2ox,同一亚族具有相似的蛋白保守基序和基因结构;共线性分析发现6种马铃薯StGAox存在不同程度的易位;在基因复制方面,与二倍体马铃薯DM比较,四倍体马铃薯Atl、C88和Ot中分别有72、117、95个StGAox基因属于共线性基因,二倍体马铃薯M6和RH中分别有21和51个共线性基因;顺式元件分析表明,胁迫相关的CAAT-box、植物生长发育相关的TATA-box、植物激素相关的CGTCA-motif、ERE和TGACG-motif、光反应相关的Box 4和G-box的数量最多;StGAox在匍匐茎中表达模式不同,大多数StGAox基因TPM值均小于20,31个StGAox基因仅在膨大匍匐茎中有表达,12个基因在膨大匍匐茎中的表达量明显高于顶端弯钩状匍匐茎。 结论 二倍体和四倍体马铃薯中共鉴定到454个GAox基因,揭示了不同倍性的马铃薯GAox家族基因结构、基序组成、染色体分布、基因复制模式和匍匐茎中的表达谱。
覃悦, 杨妍, 张磊, 卢丽丽, 李先平, 蒋伟. 二倍体和四倍体马铃薯StGAox基因鉴定与比较分析[J]. 生物技术通报, 2025, 41(3): 146-160.
QIN Yue, YANG Yan, ZHANG Lei, LU Li-li, LI Xian-ping, JIANG Wei. Identification and Comparative Analysis of the StGAox Genes in Diploid and Tetraploid Potatoes[J]. Biotechnology Bulletin, 2025, 41(3): 146-160.
图1 两种类型匍匐茎形态白线左侧为亚顶端未膨大的匍匐茎,将形成新的分枝;白线右侧为亚顶端膨大的匍匐茎,将形成试管薯
Fig. 1 Two types of stolon morphologyThe stolons on the left side of the white line are a subapical non-swollen stolon, which will form a new branch; the stolons on the right side of the white line are subapical swollen stolons, which will develop into microtubers
序号 Number | 名称 Name | 简称 Abbreviation | 倍性 Ploidy | 染色体数量 Chromosome number | 基因组版本 Genome version | StGA20ox | StGA3ox | StGA2ox | 总数 Total |
---|---|---|---|---|---|---|---|---|---|
1 | S. tuberosum group Phureja DM1-3 516 R44 | DM | 二倍体 Diploid | 24 | v6.1 | 15 | 7 | 13 | 35 |
2 | S. chacoense M6 | M6 | 二倍体 Diploid | 24 | v5.0 | 7 | 6 | 13 | 26 |
3 | S. tuberosum group Tuberosum RH89-039-16 | RH | 二倍体 Diploid | 24 | v1.0 | 23 | 11 | 22 | 56 |
4 | 大西洋S. tuberosum cv. Atlantic | Atl | 四倍体 Tetraploid | 48 | v3.0 | 46 | 9 | 44 | 99 |
5 | 合作88S. tuberosum cv. Cooperation-88 | C88 | 四倍体 Tetraploid | 48 | v1.0 | 60 | 27 | 46 | 133 |
6 | S. tuberosum cv. Otava | Ot | 四倍体 Tetraploid | 48 | v1.0 | 39 | 26 | 40 | 105 |
表1 二倍体和四倍体马铃薯信息及鉴定的GAox同源基因
Table 1 Information of diploid and tetraploid potatoes and identified of GAox homologous genes
序号 Number | 名称 Name | 简称 Abbreviation | 倍性 Ploidy | 染色体数量 Chromosome number | 基因组版本 Genome version | StGA20ox | StGA3ox | StGA2ox | 总数 Total |
---|---|---|---|---|---|---|---|---|---|
1 | S. tuberosum group Phureja DM1-3 516 R44 | DM | 二倍体 Diploid | 24 | v6.1 | 15 | 7 | 13 | 35 |
2 | S. chacoense M6 | M6 | 二倍体 Diploid | 24 | v5.0 | 7 | 6 | 13 | 26 |
3 | S. tuberosum group Tuberosum RH89-039-16 | RH | 二倍体 Diploid | 24 | v1.0 | 23 | 11 | 22 | 56 |
4 | 大西洋S. tuberosum cv. Atlantic | Atl | 四倍体 Tetraploid | 48 | v3.0 | 46 | 9 | 44 | 99 |
5 | 合作88S. tuberosum cv. Cooperation-88 | C88 | 四倍体 Tetraploid | 48 | v1.0 | 60 | 27 | 46 | 133 |
6 | S. tuberosum cv. Otava | Ot | 四倍体 Tetraploid | 48 | v1.0 | 39 | 26 | 40 | 105 |
图2 马铃薯StGAox基因家族成员进化关系及其保守结构域环形图由内向外依次表示为:赤霉素GAox家族成员的分类;6个马铃薯、番茄和拟南芥赤霉素GAox家族成员在进化关系上的分布;赤霉素GAox家族成员的保守结构域。PSSM-ID 177816、215142、215156、215404、215534、425547、442714、450120和464110分别指赤霉素2氧化酶相关的超家族cl31834、赤霉素3氧化酶相关的超家族cl33443、赤霉素20氧化酶相关的超家族cl33448、2OG-Fe(Ⅱ)加氧酶家族蛋白、2OG-Fe(Ⅱ)加氧酶家族蛋白相关的超家族cl33617、核糖体蛋白、双加氧酶相关结构域、脱氢酶(MDR)和吗啡合成N-末端非血红素双加氧酶
Fig. 2 Phylogenetic tree and conserved structural domains of potato StGAox gene family membersThe circular diagram indicates, from the inside out, the classification of the GAox gene family. The phylogentic relationships of the 6 GAox gene family members from potatoes, tomatoes, and Arabidopsis thaliana. Conservative domains of GAox gene family. PSSM-IDs 177816, 215142, 215156, 215404, 215534, 425547, 442714, 450120, and 464110 respectively refer to the gibberellin 2-oxidase-related superfamily cl31834, gibberellin 3-oxidase-related superfamily cl33443, gibberellin 20-oxidase-related superfamily cl33448, 2OG-Fe(Ⅱ) oxygenase family proteins, 2OG-Fe(Ⅱ) oxygenase family protein-related superfamily cl33617, ribosomal proteins, dioxygenase-related domains, dehydrogenase (MDR), and morphinan synthesis N-terminal non-heme dioxygenase
图4 马铃薯StGAox基因家族成员共线性分析A: 6个马铃薯基因组的谱系关系;B: 6个马铃薯基因组共线性分析
Fig. 4 Collinearity analysis of StGAox gene family membersA: Phylogenetic relationships of 6 potato genomes. B: Collinearity analysis of 6 potato genomes
图7 StGAox基因家族成员密码子使用偏向性分析A: StGAox基因家族成员密码子相关性分析;B: StGAox基因家族成员密码子使用偏向性分析
Fig. 7 Analysis of codon usage bias in StGAox gene family membersA: Correlation analysis of codons among members of the StGAox gene family. B: Bias analysis of codon usage among members of the StGAox gene family
图8 StGAox基因家族成员顺式作用元件分析及亚细胞定位A: StGAox基因家族成员顺式作用元件分析;B: StGAox基因家族成员亚细胞定位分析
Fig. 8 Analysis of cis acting elements and subcellular localization of StGAox gene family membersA: Cis-acting element analysis of the StGAox gene family members. B. Subcellular localization analysis of the StGAox gene family members.
图9 StGAox基因家族成员表达量分析星号表示在匍匐茎中表达的StGAox基因,除14表示的节点外,其余数字标注的节点为6种马铃薯的StGAox同源基因,其中4-StGA3ox2、5-StGA3ox1、6-StGA3ox3、11-StGA2ox1、17-StGA20ox2、18-StGA20ox3、19-StGA20ox1代表已报道的StGAox基因
Fig. 9 Analysis of expressions of StGAox gene family membersThe asterisks indicate the expressions of the StGAox genes in stolons. Except for node 14, the other numbered nodes refer to the StGAox homologous genes in six potatoes. Specifically, 4-StGA3ox2, 5-StGA3ox1, 6-StGA3ox3, 11-StGA2ox1, 17-StGA20ox2, 18-StGA20ox3, and 19-StGA20ox1 refer to previously reported StGAox genes
1 | Stokstad E. The new potato [J]. Science, 2019, 363(6427): 574-577. |
2 | Hawkes JG. The potato: evolution, biodiversity and genetic resources [M]. Washington, D.C.: Smithsonian Institution Press, 1990. |
3 | Hardigan MA, Laimbeer FPE, Newton L, et al. Genome diversity of Tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato [J]. Proc Natl Acad Sci USA, 2017, 14(46):E9999-E10008. |
4 | Spooner DM, McLean K, Ramsay G, et al. A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping [J]. Proc Natl Acad Sci USA, 2005, 102(41): 14694-14699. |
5 | Watanabe K, Peloquin SJ. Occurrence of 2n pollen and ps gene frequencies in cultivated groups and their related wild species in Tuber-bearing Solanums [J]. Theor Appl Genet, 1989, 78(3): 329-336. |
6 | Raker CM, Spooner DM. Chilean tetraploid cultivated potato, Solanum tuberosum, is distinct from the Andean populations [J]. Crop Sci, 2002, 42(5): 1451-1458. |
7 | Tuttle HK, Del Rio AH, Bamberg JB, et al. Potato soup: analysis of cultivated potato gene bank populations reveals high diversity and little structure [J]. Front Plant Sci, 2024, 15: 1429279. |
8 | Gutaker RM, Weiß CL, Ellis D, et al. The origins and adaptation of European potatoes reconstructed from historical genomes [J]. Nat Ecol Evol, 2019, 3(7): 1093-1101. |
9 | Vreugdenhil D, Sergeeva LI. Gibberellins and tuberization in potato [J]. Potato Res, 1999, 42(3): 471-481. |
10 | Rodríguez-Falcón M, Bou J, Prat S. Seasonal control of tuberization in potato: conserved elements with the flowering response [J]. Annu Rev Plant Biol, 2006, 57: 151-180. |
11 | Chen PL, Yang RX, Bartels D, et al. Roles of abscisic acid and gibberellins in stem/root tuber development [J]. Int J Mol Sci, 2022, 23(9): 4955. |
12 | Bandara PMS, Tanino KK. Paclobutrazol enhances minituber production in Norland potatoes [J]. J Plant Growth Regul, 1995, 14(3): 151-155. |
13 | Vreugdenhil D, Bindels P, Reinhoud P, et al. Use of the growth retardant tetcyclacis for potato tuber formation in vitro [J]. Plant Growth Regul, 1994, 14(3): 257-265. |
14 | Hedden P, Phillips AL. Gibberellin metabolism: new insights revealed by the genes [J]. Trends Plant Sci, 2000, 5(12): 523-530. |
15 | Carrera E, Bou J, García-Martínez JL, et al. Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and Tuber yield of potato plants [J]. Plant J, 2000, 22(3): 247-256. |
16 | Roumeliotis E, Kloosterman B, Oortwijn M, et al. Down regulation of StGA3ox genes in potato results in altered GA content and affect plant and tuber growth characteristics [J]. J Plant Physiol, 2013, 170(14): 1228-1234. |
17 | Kloosterman B, Navarro C, Bijsterbosch G, et al. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development [J]. Plant J, 2007, 52(2): 362-373. |
18 | Hedden P. Gibberellin metabolism and its regulation [J]. J Plant Growth Regul, 2001, 20(4): 317-318. |
19 | Pham GM, Hamilton JP, Wood JC, et al. Construction of a chromosome-scale long-read reference genome assembly for potato [J]. Gigascience, 2020, 9(9): giaa100. |
20 | Zhou Q, Tang D, Huang W, et al. Haplotype-resolved genome analyses of a heterozygous diploid potato [J]. Nat Genet, 2020, 52(10): 1018-1023. |
21 | Leisner CP, Hamilton JP, Crisovan E, et al. Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity [J]. Plant J, 2018, 94(3): 562-570. |
22 | Bao ZG, Li CH, Li GC, et al. Genome architecture and tetrasomic inheritance of autotetraploid potato [J]. Mol Plant, 2022, 15(7): 1211-1226. |
23 | Hoopes G, Meng XX, Hamilton JP, et al. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity [J]. Mol Plant, 2022, 15(3): 520-536. |
24 | Sun HQ, Jiao WB, Krause K, et al. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar [J]. Nat Genet, 2022, 54(3): 342-348. |
25 | Tang D, Jia YX, Zhang JZ, et al. Genome evolution and diversity of wild and cultivated potatoes [J]. Nature, 2022, 606(7914): 535-541. |
26 | Bozan I, Achakkagari SR, Anglin NL, et al. Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species [J]. Proc Natl Acad Sci USA, 2023, 120(31): e2211117120. |
27 | Achakkagari SR, Bozan I, Camargo-Tavares JC, et al. The phased Solanum okadae genome and Petota pangenome analysis of 23 other potato wild relatives and hybrids [J]. Sci Data, 2024, 11(1): 454. |
28 | Ding QQ, Wang F, Xue J, et al. Identification and expression analysis of hormone biosynthetic and metabolism genes in the 2OGD family for identifying genes that may be involved in tomato fruit ripening [J]. Int J Mol Sci, 2020, 21(15): 5344. |
29 | 吴丁洁, 陈盈盈, 徐静, 等. 植物赤霉素氧化酶及其功能研究进展 [J]. 生物技术通报, 2024, 40(7): 43-54. |
Wu DJ, Chen YY, Xu J, et al. Research progress in plant gibberellin oxidase and its functions [J]. Biotechnol Bull, 2024, 40(7): 43-54. | |
30 | Malankar NN, Kondhare KR, Saha K, et al. The phased short-interfering RNA siRD29 (-) regulates GIBBERELLIN 3-OXIDASE 3 during stolon-to-Tuber transitions in potato [J]. Plant Physiol, 2023, 193(4): 2555-2572. |
31 | Han FM, Zhu BG. Evolutionary analysis of three gibberellin oxidase genesin rice, Arabidopsis, and soybean [J]. Gene, 2011, 473(1): 23-35. |
32 | Ci JB, Wang XY, Wang Q, et al. Genome-wide analysis of gibberellin-dioxygenases gene family and their responses to GA applications in maize [J]. PLoS One, 2021, 16(5): e0250349. |
33 | He HH, Liang GP, Lu SX, et al. Genome-wide identification and expression analysis of GA2ox, GA3ox, and GA20ox are related to gibberellin oxidase genes in grape (VitisVinifera L.) [J]. Genes, 2019, 10(9): 680. |
34 | Huang Y, Wang X, Ge S, et al. Divergence and adaptive evolution of the gibberellin oxidase genes in plants [J]. BMC Evol Biol, 2015, 15: 207. |
35 | Jiao SJ, Liu Z, Kang YC, et al. Identification of the GAox gene family in potato (Solanum tuberosum L.) and its expression analysis in response to drought stress [J]. Chem Biol Technol Agric, 2024, 11(1): 52. |
36 | Lye ZN, Purugganan MD. Copy number variation in domestication [J]. Trends Plant Sci, 2019, 24(4): 352-365. |
37 | Hardigan MA, Crisovan E, Hamilton JP, et al. Genome reduction uncovers a large dispensable genome and adaptive role for copy number variation in asexually propagated Solanum tuberosum [J]. Plant Cell, 2016, 28(2): 388-405. |
38 | Yu RM, Zhang N, Zhang BW, et al. Genomic insights into biased allele loss and increased gene numbers after genome duplication in autotetraploid Cyclocarya paliurus [J]. BMC Biol, 2023, 21(1): 168. |
39 | Cedroni ML, Cronn RC, Adams KL, et al. Evolution and expression of MYB genes in diploid and polyploid cotton [J]. Plant Mol Biol, 2003, 51(3): 313-325. |
40 | Garsmeur O, Charron C, Bocs S, et al. High homologous gene conservation despite extreme autopolyploid redundancy in sugarcane [J]. New Phytol, 2011, 189(2): 629-642. |
41 | Gaur U, Li K, Mei SQ, et al. Research progress in allele-specific expression and its regulatory mechanisms [J]. J Appl Genet, 2013, 54(3): 271-283. |
42 | Pham GM, Newton L, Wiegert-Rininger K, et al. Extensive genome heterogeneity leads to preferential allele expression and copy number-dependent expression in cultivated potato [J]. Plant J, 2017, 92(4): 624-637. |
[1] | 张益瑄, 马宇, 王童童, 盛苏奥, 宋家凤, 吕钊彦, 朱晓彪, 侯华兰. 马铃薯DIR家族全基因组鉴定及表达模式分析[J]. 生物技术通报, 2025, 41(3): 123-136. |
[2] | 俞婷, 黄丹丹, 朱炎辉, 杨梅宏, 艾菊, 高冬丽. 马铃薯Stpatatin 05基因转录调控因子筛选及互作验证[J]. 生物技术通报, 2025, 41(3): 137-145. |
[3] | 黄颖, 遇文婧, 刘雪峰, 刁桂萍. 山新杨谷胱甘肽转移酶基因的生物信息学与表达模式分析[J]. 生物技术通报, 2025, 41(2): 248-256. |
[4] | 李明, 刘祥宇, 王益娜, 和四梅, 沙本才. 紫金龙异紫堇定生物合成相关6-OMT基因克隆与功能表征[J]. 生物技术通报, 2025, 41(2): 309-320. |
[5] | 王子傲, 田瑞, 崔永梅, 白羿雄, 姚晓华, 安立昆, 吴昆仑. 青稞HvnJAZ4的生物信息学和表达模式分析[J]. 生物技术通报, 2025, 41(1): 173-185. |
[6] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
[7] | 王超, 白如仟, 管俊梅, 罗稷林, 何雪姣, 迟绍轶, 马玲. 马铃薯块茎变绿中StHY5对龙葵素合成的促进作用[J]. 生物技术通报, 2024, 40(9): 113-122. |
[8] | 夏士轩, 耿泽栋, 祝光涛, 张春芝, 李大伟. 基于深度学习的马铃薯花粉活力快速检测[J]. 生物技术通报, 2024, 40(9): 123-130. |
[9] | 毛向红, 卢瑶, 范向斌, 杜培兵, 白小东. 基于SSR荧光标记毛细管电泳的马铃薯品种遗传多样性分析及分子身份证构建[J]. 生物技术通报, 2024, 40(9): 131-140. |
[10] | 袁兰, 黄娅楠, 张贝妮, 熊雨萌, 王洪洋. 基于流式细胞仪鉴定马铃薯倍性的高通量样品制备方法[J]. 生物技术通报, 2024, 40(9): 141-147. |
[11] | 宋倩娜, 段永红, 冯瑞云. CRISPR/Cas9介导的高效四倍体马铃薯试管薯基因编辑体系的建立[J]. 生物技术通报, 2024, 40(9): 33-41. |
[12] | 王柯然, 闫俊杰, 刘建凤, 高玉林. RNAi技术在马铃薯害虫防控中的应用和风险[J]. 生物技术通报, 2024, 40(9): 4-10. |
[13] | 张小妹, 周南伶, 张赛行, 王超, 沈玉龙, 管俊梅, 马玲. 马铃薯StDREBs基因的克隆及其表达分析[J]. 生物技术通报, 2024, 40(9): 42-50. |
[14] | 满全财, 孟姿诺, 李伟, 蔡心汝, 苏润东, 付长青, 高顺娟, 崔江慧. 马铃薯AQP基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 51-63. |
[15] | 吴娟, 武小娟, 王沛捷, 谢锐, 聂虎帅, 李楠, 马艳红. 彩色马铃薯花青素合成相关ERF基因筛选及表达分析[J]. 生物技术通报, 2024, 40(9): 82-91. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 26
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||