生物技术通报 ›› 2025, Vol. 41 ›› Issue (2): 309-320.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0544
• 研究报告 • 上一篇
李明1,2,3(), 刘祥宇1,2,3, 王益娜1,2,3, 和四梅1,2,3,4, 沙本才2,3,4(
)
收稿日期:
2024-06-07
出版日期:
2025-02-26
发布日期:
2025-02-28
通讯作者:
沙本才,男,副教授,研究方向 :作物栽培与耕作;E-mail: ynshbc@aliyun.com作者简介:
李明,男,硕士研究生,研究方向 :药用植物生物合成;E-mail: 3049730657@qq.com
基金资助:
LI Ming1,2,3(), LIU Xiang-yu1,2,3, WANG Yi-na1,2,3, HE Si-mei1,2,3,4, SHA Ben-cai2,3,4(
)
Received:
2024-06-07
Published:
2025-02-26
Online:
2025-02-28
摘要:
目的 (S)-去甲乌药碱O-甲基转移酶(6-OMT)是异紫堇定生物合成的关键限速酶,通过克隆与体外酶活验证紫金龙6-OMT基因功能,为解析紫金龙异紫堇定生物合成途径奠定基础。 方法 从紫金龙转录组数据中挖掘DsOMT基因,通过PCR扩增获得全长cDNA序列,并通过生物信息学分析DsOMT蛋白结构;分析DsOMT基因在不同组织中的表达水平;构建pET-28a-DsOMT原核表达载体,将其转入大肠杆菌BL21(DE3)进行诱导表达,纯化蛋白后进行体外酶反应,以表征其功能。 结果 从转录组数据中挖掘到4个DsOMT候选基因,分别命名为DsOMT07、DsOMT08、DsOMT010、DsOMT012,并成功扩增得到全长cDNA序列;4个DsOMT蛋白都不存在跨膜结构域和信号肽,属于膜外蛋白。系统发育显示4个DsOMT与6-OMT亚家族亲缘关系较近。对4个DsOMT的氨基酸序列进行分析,显示可能具有上游途径(S)-去甲乌药碱6-OH位点的催化活性。表达谱分析发现4个DsOMT基因在根中高表达。SDS-PACE结果表明DsOMT蛋白可溶性高,并在大肠杆菌中高效表达,体外酶反应后发现DsOMT010能够催化(S)-去甲乌药碱的C6的O-甲基化形成(S)-衡州乌药碱。 结论 成功克隆了4个DsOMT基因,属于膜外蛋白,与6-OMT亚家族亲缘关系较近,4个DsOMT基因在根中高表达;同时在大肠杆菌中实现了DsOMT的异源表达,并纯化蛋白进行了体外酶功能表征,鉴定到1个(S)-去甲乌药碱C6位O-甲基转移酶DsOMT010。
李明, 刘祥宇, 王益娜, 和四梅, 沙本才. 紫金龙异紫堇定生物合成相关6-OMT基因克隆与功能表征[J]. 生物技术通报, 2025, 41(2): 309-320.
LI Ming, LIU Xiang-yu, WANG Yi-na, HE Si-mei, SHA Ben-cai. Cloning and Functional Characterization of 6-OMT Gene Related to Isocorydine Biosynthesis in Dactylicapnos scandens[J]. Biotechnology Bulletin, 2025, 41(2): 309-320.
图1 紫金龙各组织样及化合物结构A-C分别为采集的紫金龙根、茎、叶组织;D和E分别为异紫堇定碱和(S)-去甲乌药碱的结构及位置编号
Fig. 1 Structure of tissue samples and compounds of D. scandensA-C refers to the roots, stems and leaves of D. scandens, respectively. D and E are the structure and position numbers of isovioladinine and (S)-norcoclaurine, respectively
项目列表 Analysis item | 网址 Website |
---|---|
NCBI同源基因比对分析 | https://blast.ncbi.nlm.nih.gov/Blast.cgi |
蛋白理化性质分析 | https://web.expasy.org/protparam/ |
蛋白信号肽预测 | https://services.healthtech.dtu.dk/services/SignalP-6.0/ |
蛋白跨膜结构域预测 | https://services.healthtech.dtu.dk/services/TMHMM-2.0/ |
蛋白二级结构预测 | https://npsa-prabi.ibcp.fr/cgi-bin/npsa |
蛋白三级结构预测 | https://swissmodel.expasy.org/ |
蛋白保守基序分析 | https://meme-suite.org/meme/ |
蛋白保守结构域分析 | https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi |
蛋白亚细胞定位 | http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/ |
多序列比对 | https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi |
表1 生物信息学分析网站链接
Table 1 Website links on bioinformatics analysis
项目列表 Analysis item | 网址 Website |
---|---|
NCBI同源基因比对分析 | https://blast.ncbi.nlm.nih.gov/Blast.cgi |
蛋白理化性质分析 | https://web.expasy.org/protparam/ |
蛋白信号肽预测 | https://services.healthtech.dtu.dk/services/SignalP-6.0/ |
蛋白跨膜结构域预测 | https://services.healthtech.dtu.dk/services/TMHMM-2.0/ |
蛋白二级结构预测 | https://npsa-prabi.ibcp.fr/cgi-bin/npsa |
蛋白三级结构预测 | https://swissmodel.expasy.org/ |
蛋白保守基序分析 | https://meme-suite.org/meme/ |
蛋白保守结构域分析 | https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi |
蛋白亚细胞定位 | http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/ |
多序列比对 | https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi |
基因 Gene | 正向引物序列 Forward primer sequence (5′-3′) | 反向引物序列 Reverse primer sequence (5′-3′) |
---|---|---|
DsOMT08 | cagcaaatgggtcgcggatccATGGAAGTGAAGAAGAGTGAAC | gacggagctcgaattcggatccTTAATATGGATAAACCTCAATAACAG |
DsOMT07 | cagcaaatgggtcgcggatccATGGAGATGATCATCAATGAAG | acggagctcgaattcggatccCTAAGGATATGCAACAATAACTG |
DsOMT010 | cagcaaatgggtcgcggatccATGGGTGTCAGTGATATAGCTG | acggagctcgaattcggatccCTATGGGAAGGCTTCAATGACAG |
DsOMT012 | cagcaaatgggtcgcggatccATGGGTGCCAATGAGATAGCAG | acggagctcgaattcggatccCTATGGGAAGGCTTCAATGACAG |
PCR-pET-28a | taatacgactcactataggggaatt | aaacgggtcttgaggggttttttg |
表2 PCR引物序列
Table 2 PCR primer sequences
基因 Gene | 正向引物序列 Forward primer sequence (5′-3′) | 反向引物序列 Reverse primer sequence (5′-3′) |
---|---|---|
DsOMT08 | cagcaaatgggtcgcggatccATGGAAGTGAAGAAGAGTGAAC | gacggagctcgaattcggatccTTAATATGGATAAACCTCAATAACAG |
DsOMT07 | cagcaaatgggtcgcggatccATGGAGATGATCATCAATGAAG | acggagctcgaattcggatccCTAAGGATATGCAACAATAACTG |
DsOMT010 | cagcaaatgggtcgcggatccATGGGTGTCAGTGATATAGCTG | acggagctcgaattcggatccCTATGGGAAGGCTTCAATGACAG |
DsOMT012 | cagcaaatgggtcgcggatccATGGGTGCCAATGAGATAGCAG | acggagctcgaattcggatccCTATGGGAAGGCTTCAATGACAG |
PCR-pET-28a | taatacgactcactataggggaatt | aaacgggtcttgaggggttttttg |
图2 紫金龙候选基因热图、与其他植物的甲基转移酶基因的系统进化树及保守基序分析A:MT家族进化树分析;B:候选基因在紫金龙不同组织中的表达量热图;C:候选基因与其他物种的OMT基因的进化树(前)和保守基序(后)分析
Fig. 2 Candidate gene heat map of D. scandens, phylogenetic tree and conserved motif analysis of methyltransferase genes in other plantsA: Analysis of MT family phylogenetic tree. B: Expression heat map of candidate genes in different tissues of D. scandens. C: Phylogenetic tree (pre) and conserved motif (post) analysis of candidate genes and OMT genes of other species
基因 Gene | 氨基酸数目 Amino acid number | 分子量 Molecular weight/Da | 理论等电点 Theoretical pI | 不稳定系数 Instability index | 脂肪系数 Fat coefficient | 亲水系数 Hydrophilicity coefficient | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|
DsOMT07 | 356 | 39 577.72 | 4.95 | 28.65 | 105.96 | 0.024 | 叶绿体 |
DsOMT08 | 353 | 39 349.51 | 5.61 | 33.31 | 93.34 | -0.150 | 叶绿体 |
DsOMT010 | 349 | 38 582.51 | 5.23 | 36.41 | 102.23 | 0.034 | 叶绿体 |
DsOMT012 | 348 | 38 346.22 | 5.47 | 38.58 | 102.53 | 0.025 | 叶绿体 |
表3 DsOMT蛋白的理化性质预测统计
Table 3 Prediction and statistics of physicochemical properties of DsOMT protein
基因 Gene | 氨基酸数目 Amino acid number | 分子量 Molecular weight/Da | 理论等电点 Theoretical pI | 不稳定系数 Instability index | 脂肪系数 Fat coefficient | 亲水系数 Hydrophilicity coefficient | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|
DsOMT07 | 356 | 39 577.72 | 4.95 | 28.65 | 105.96 | 0.024 | 叶绿体 |
DsOMT08 | 353 | 39 349.51 | 5.61 | 33.31 | 93.34 | -0.150 | 叶绿体 |
DsOMT010 | 349 | 38 582.51 | 5.23 | 36.41 | 102.23 | 0.034 | 叶绿体 |
DsOMT012 | 348 | 38 346.22 | 5.47 | 38.58 | 102.53 | 0.025 | 叶绿体 |
图4 四个筛选的DsOMT蛋白跨膜结构域(上)及信号肽预测(下)A-D为DsOMT07、DsOMT08、DsOMT010和DsOMT012蛋白的跨膜结构域(上)及信号肽(下)预测
Fig. 4 Transmembrane structural domains of four screened DsOMT proteins (top) and signaling peptide prediction (bottom)A-D are the predicted transmembrane structural domains (top) and signaling peptides (bottom) of DsOMT07, DsOMT08, DsOMT010, and DsOMT012 proteins
图5 四个DsOMT蛋白的二级结构预测A-D依次是DsOMT07、DsOMT08、DsOMT010和DsOMT012蛋白二级结构预测;E: 四个DsOMT蛋白的二级结构预测统计
Fig. 5 Secondary structure prediction of four DsOMT proteinsA-D are the predicted secondary structures of DsOMT07, DsOMT08, DsOMT010 and DsOMT012 proteins in order. E: Secondary structure prediction statistics of four DsOMT proteins
图6 四个DsOMT蛋白的三级结构预测A-D依次为DsOMT07、DsOMT08、DsOMT010和DsOMT012蛋白三级结构预测;蓝色:螺旋;绿色:延伸链;银白色:无规则卷曲
Fig. 6 Prediction of the tertiary structure of four DsOMT proteinsA-D predicted tertiary structure of DsOMT07, DsOMT08, DsOMT010 and DsOMT012 proteins in order; blue: spiral; green: extension chain; silver-white: irregular curl
图7 紫金龙总RNA提取及DsOMT基因的克隆A:紫金龙各组织总RNA电泳胶图,泳道1-3分别为紫金龙根、茎、叶组织总RNA电泳胶图;B:克隆4个候选的DsOMT基因电泳胶图,泳道4-7分别为DsOMT07、DsOMT08、DsOMT010、DsOMT012基因克隆电泳胶图;泳道M:DNA marker 5 000电泳条带
Fig. 7 Extraction of total RNA from D. scandens and cloning of DsOMT geneA: Total RNA electrophoresis gel diagram of each tissue of D. scandens, lane 1-3 are total RNA electrophoresis gel diagram of root, stem and leaf tissues of D. scandens, respectively. B: Clone 4 candidate DsOMT gene electrophoresis gels, lane 4-7are cloned for DsOMT07, DsOMT08, DsOMT010 and DsOMT012 genes, respectively. Lane M: DNA marker 5 000 electrophoresis band
图8 pET-28a载体单酶切及DsOMT重组pET-28a验证A:单酶切的pET-28a线性载体电泳胶图,泳道1为未酶切的pET-28a载体,泳道2和3为已酶切的pET-28a载体;B:菌液检测阳性的pET-28a-DsOMT(+)载体电泳胶图,泳道4-5、6-7、8-9和10-11分别为pET-28a-DsOMT 07(+)、pET-28a-DsOMT 08(+)、pET-28a-DsOMT 010(+)和pET-28a-DsOMT 012(+)菌液验证电泳胶图;泳道M为DNA marker 5 000电泳条带
Fig. 8 Single enzyme digestion of pET-28a vector and verification of DsOMT recombinant pET-28aA: Gel diagram of single-digested pET-28a linear vector, lane 1 is the undigested pET-28a vector, and lane 2 and 3 are the digested pET-28a vector. B: Electrophoresis gel diagram of pET-28a-DsOMT(+) vector with positive bacterial water test, and pET-28a-DsOMT 07(+), pET-28a-DsOMT 08(+), pET-28a-DsOMT 010(+) and pET-28a-DsOMT 012(+) in lane 4-5, 6-7, 8-9 and 10-11, respectively. Lane M is the DNA marker 5 000 electrophoresis band
图9 DsOMT蛋白纯化A-D分别为DsOMT07、DsOMT08、DsOMT010、DsOMT012蛋白250 mmol/L咪唑纯化的电泳胶图;A-D中泳道1-3为重复的蛋白样品条带,图A、C和D中的泳道M为蛋白marker 150,图B中的泳道M为蛋白marker 310
Fig. 9 Purification of DsOMT proteinA-D are electropherograms of 250 mmol/L imidazole purification of DsOMT07, DsOMT08, DsOMT010 and DsOMT012 proteins, respectively. Lane 1-3 in A-D are duplicate protein sample bands, lane M in panel A, C, and D is protein marker 150, and lane M in panel B is protein marker 310
图10 蛋白体外酶反应及LC-MS检测A:DsOMT010体外酶反应的催化步骤;B:LC-MS检测分析的TIC图;C:LC-MS检测的(S)-衡州乌药碱标准品EIC质谱图;D:LC-MS检测DsOMT010+(S)-去甲乌药碱的产物EIC质谱图
Fig. 10 Protein enzymatic reaction in vitro and LC-MS detectionA: Catalytic steps of DsOMT010 in vitro enzymatic reaction. B: TIC diagram of LC-MS detection and analysis. C: LC-MS detection of (S)-coclaurine standard EIC mass spectrometry. D: LC-MS detection of DsOMT010+(S)-norcoclaurine product EIC mass spectrometry
1 | 中国科学院中国植物志编辑委员会. 中国植物志-第32卷[M]. 北京: 科学出版社, 1999. |
Editorial Committee of Flora of China Chinese Academy of Sciences. Flora of China (Vol. 32) [M]. Beijing: Science Press, 1999. | |
2 | 罗建蓉, 钱金栿, 周浓. 紫金龙脂溶性化学成分的研究 [J]. 西北药学杂志, 2010, 25(1): 19-20. |
Luo JR, Qian JF, Zhou N. Analysis of the hydrophobic components in Dactylicapnos scandens by GC-MS [J]. Northwest Pharm J, 2010, 25(1): 19-20. | |
3 | 张伟, 丁宏莉, 张斌. RP-HPLC法同时测定紫金龙中2种生物碱的含量 [J]. 云南中医学院学报, 2009, 32(6): 18-19, 47. |
Zhang W, Ding HL, Zhang B. Simultaneous RP-HPLC determination of two alkaloids in root of Dactylicapnos scandens [J]. J Yunnan Univ Tradit Chin Med, 2009, 32(6): 18-19, 47. | |
4 | 吴勐, 王银叶, 艾铁民. 紫金龙总生物碱的镇痛作用及其机制初探 [J]. 中草药, 2003, 34(11): 1022-1025. |
Wu M, Wang YY, Ai TM. Studies of analgesic effect and mechanism of total alkaloid extracted from Dactylicapnos scandens [J]. Chin Tradit Herb Drugs, 2003, 34(11): 1022-1025. | |
5 | Guo CC, Jiang Y, Li L, et al. Application of a liquid chromatography-tandem mass spectrometry method to the pharmacokinetics, tissue distribution and excretion studies of Dactylicapnos scandens in rats [J]. J Pharm Biomed Anal, 2013, 74: 92-100. |
6 | Wang X, Dong HJ, Yang B, et al. Preparative isolation of alkaloids from Dactylicapnos scandens using pH-zone-refining counter-current chromatography by changing the length of the separation column [J]. J Chromatogr B, 2011, 879(31): 3767-3770. |
7 | 王富华, 胡晓, 陈海林, 等. 紫金龙的生物碱类成分 [J]. 中国中药杂志, 2009, 34(16): 2057-2059. |
Wang FH, Hu X, Chen HL, et al. Alkaloids from Dactylicapnos scandens hutch [J]. China J Chin Mater Med, 2009, 34(16): 2057-2059. | |
8 | 张文鑫, 韩丽妹, 周毅生, 等. RP-HPLC同时测定紫金龙中4种异喹啉生物碱的含量 [J]. 中国药学杂志, 2009, 44(3): 233-236. |
Zhang WX, Han LM, Zhou YS, et al. Simultaneous determination of four isoquinoline alkaloids in root of Dactylicapnos scandens by RP-HPLC [J]. Chin Pharm J, 2009, 44(3): 233-236. | |
9 | 刘金凤, 黄鹏, 卿志星, 等. 苄基异喹啉类生物碱生物合成与代谢工程研究进展 [J]. 基因组学与应用生物学, 2016, 35(8): 2194-2200. |
Liu JF, Huang P, Qing ZX, et al. Advances in the biosynthesis and metabolic engineering research of benzylisoquinoline alkaloids [J]. Genom Appl Biol, 2016, 35(8): 2194-2200. | |
10 | Jiang B, Gao L, Wang HJ, et al. Characterization and heterologous reconstitution of Taxus biosynthetic enzymes leading to baccatin III [J]. Science, 2024, 383(6683): 622-629. |
11 | Zhou C, Chen TJ, Gu AD, et al. Combining protein and metabolic engineering to achieve green biosynthesis of 12β-O-Glc-PPD in Saccharomyces cerevisiae [J]. Green Chem, 2023, 25(4): 1356-1367. |
12 | Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin [J]. Nature, 2013, 496(7446): 528-532. |
13 | 辛爱一, 柳军玺, 邸多隆. 阿朴菲类生物碱研究进展 [J]. 中草药, 2018, 49(3): 712-724. |
Xin AY, Liu JX, Di DL. Research progress on aporphine alkaloids [J]. Chin Tradit Herb Drugs, 2018, 49(3): 712-724. | |
14 | Han JN, Li SJ. De novo biosynthesis of berberine and halogenated benzylisoquinoline alkaloids in Saccharomyces cerevisiae [J]. Commun Chem, 2023, 6(1): 27. |
15 | Ikezawa N, Iwasa K, Sato F. Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C-C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells [J]. J Biol Chem, 2008, 283(14): 8810-8821. |
16 | Leng L, Xu ZC, Hong BX, et al. Cepharanthine analogs mining and genomes of Stephania accelerate anti-coronavirus drug discovery [J]. Nat Commun, 2024, 15(1): 1537. |
17 | Zhang LB, Zhang SQ, Liao LJ, et al. Discovery, structure, and mechanism of the (R, S)-norcoclaurine synthase for the chiral synthesis of benzylisoquinoline alkaloids [J]. ACS Catal, 2023, 13(22): 15164-15174. |
18 | Farrow SC, Hagel JM, Beaudoin GAW, et al. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy [J]. Nat Chem Biol, 2015, 11(9): 728-732. |
19 | Yang Y, Yuan JS, Ross J, et al. An Arabidopsis thaliana methyltransferase capable of methylating farnesoic acid [J]. Arch Biochem Biophys, 2006, 448(1/2): 123-132. |
20 | 王志刚, 吴建新. DNA甲基转移酶分类、功能及其研究进展 [J]. 遗传, 2009, 31(9): 903-912. |
Wang ZG, Wu JX. DNA methyltransferases: classification, functions and research progress [J]. Hereditas, 2009, 31(9): 903-912. | |
21 | Schmidberger JW, James AB, Edwards R, et al. Halomethane biosynthesis: Structure of a SAM-dependent halide methyltransferase from Arabidopsis thaliana [J]. Angew Chem Int Edit. 2010, 49(21): 3646-3648. |
22 | Lin Z, Hu ZW, Zhou LJ, et al. A large conserved family of small-molecule carboxyl methyltransferases identified from microorganisms [J]. Proc Natl Acad Sci U S A, 2023, 120(20): e2301389120. |
23 | Männistö PT, Kaakkola S. Catechol-O-methyltransferase (COMT): Biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors [J]. Pharmacol Rev, 1999, 51(4): 593-628. |
24 | Stanevich V, Jiang L, Satyshur KA, et al. The structural basis for tight control of PP2A methylation and function by LCMT-1 [J]. Mol Cell, 2011, 41(3): 331-342. |
25 | Li BZ, Yuan YJ, Jia B. Prospects of synthetic biology [J]. Sci Sin Chim, 2014, 44(9): 1455-1460. |
26 | Dang TTT, Facchini PJ. Characterization of three O-methyltransferases involved in noscapine biosynthesis in opium poppy [J]. Plant Physiol, 2012, 159(2): 618-631. |
27 | Chang LM, Hagel JM, Facchini PJ. Isolation and characterization of O-methyltransferases involved in the biosynthesis of glaucine in Glaucium flavum [J]. Plant Physiol, 2015, 169(2): 1127-1140. |
28 | Bu JL, Zhang XH, Li QS, et al. Catalytic promiscuity of O-methyltransferases from Corydalis yanhusuo leading to the structural diversity of benzylisoquinoline alkaloids [J]. Hortic Res, 2022, 9: uhac152. |
29 | Menéndez-Perdomo IM, Facchini PJ. Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera) [J]. J Biol Chem, 2020, 295(6): 1598-1612. |
30 | Chang JJ, Guo YL, Yan JY, et al. The role of watermelon caffeic acid O-methyltransferase (ClCOMT1) in melatonin biosynthesis and abiotic stress tolerance [J]. Hortic Res, 2021, 8: 210. |
31 | Jin JQ, Qu FR, Huang HS, et al. Characterization of two O-methyltransferases involved in the biosynthesis of O-methylated catechins in tea plant [J]. Nat Commun, 2023, 14(1): 5075. |
32 | He SM, Song WL, Cong K, et al. Identification of candidate genes involved in isoquinoline alkaloids biosynthesis in Dactylicapnos scandens by transcriptome analysis [J]. Sci Rep, 2017, 7(1): 9119. |
33 | Robin AY, Giustini C, Graindorge M, et al. Crystal structure of norcoclaurine-6-O-methyltransferase, a key rate-limiting step in the synthesis of benzylisoquinoline alkaloids [J]. Plant J, 2016, 87(6): 641-653. |
34 | Pyne ME, Kevvai K, Grewal PS, et al. A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids [J]. Nat Commun, 2020, 11(1): 3337. |
35 | 于荣敏, 王春盛, 宋丽艳. 罂粟科植物的化学成分及药理作用研究进展 [J]. 上海中医药杂志, 2004, 38(7): 59-61. |
Yu RM, Wang CS, Song LY. Progress on the study of chemical constituents and pharmacological action for the plants of Papaveraceae [J]. Shanghai J Tradit Chin Med, 2004, 38(7): 59-61. | |
36 | Morris JS, Facchini PJ. Molecular origins of functional diversity in benzylisoquinoline alkaloid methyltransferases [J]. Front Plant Sci, 2019, 10: 1058. |
37 | Clapés P, Joglar J, Bujons J. Cascade biocatalysis: Integrating stereoselective and environmentally friendly reactions [M] . Hoboken: John Wiley & Sons, Inc, 2014. |
38 | Navarro G, Elliott HW. The effects of morphine, morphinone and thebaine on the EEG and behavior of rabbits and cats [J]. Neuropharmacology, 1971, 10(4): 367-377. |
39 | Ma WX, Noble WS, Bailey TL. Motif-based analysis of large nucleotide data sets using MEME-ChIP [J]. Nat Protoc, 2014, 9(6): 1428-1450. |
40 | Yang M, Fehl C, Lees KV, et al. Functional and informatics analysis enables glycosyltransferase activity prediction [J]. Nat Chem Biol, 2018, 14(12): 1109-1117. |
41 | 朱新焰, 杨维泽, 杨绍兵, 等. 紫金龙营养器官组织结构和组织化学定位研究 [J]. 西南农业学报, 2022, 35(2): 304-309. |
Zhu XY, Yang WZ, Yang SB, et al. Tissue structure and histochemistry localization from different vegetative organs of Dactylicapnos scandens [J]. Southwest China J Agric Sci, 2022, 35(2): 304-309. | |
42 | 曹愿, 高晶, 高小力, 等. 紫金龙属生物碱及其药理活性研究进展 [J]. 中草药, 2014, 45(17): 2556-2563. |
Cao Y, Gao J, Gao XL, et al. Research progress on alkaloids from genus Dactylicapnos Wall. and their pharmacological activities [J]. Chin Tradit Herb Drugs, 2014, 45(17): 2556-2563. | |
43 | Pienkny S, Brandt W, Schmidt J, et al. Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L) [J]. Plant J, 2009, 60(1): 56-67. |
44 | Xu DQ, Lin HF, Tang YP, et al. Integration of full-length transcriptomics and targeted metabolomics to identify benzylisoquinoline alkaloid biosynthetic genes in Corydalis yanhusuo [J]. Hortic Res, 2021, 8(1): 16. |
[1] | 黄颖, 遇文婧, 刘雪峰, 刁桂萍. 山新杨谷胱甘肽转移酶基因的生物信息学与表达模式分析[J]. 生物技术通报, 2025, 41(2): 248-256. |
[2] | 向春繁, 李勒松, 王娟, 梁艳丽, 杨生超, 栗孟飞, 赵艳. 当归肉桂醇脱氢酶AsCAD功能鉴定及表达分析[J]. 生物技术通报, 2025, 41(2): 295-308. |
[3] | 王子傲, 田瑞, 崔永梅, 白羿雄, 姚晓华, 安立昆, 吴昆仑. 青稞HvnJAZ4的生物信息学和表达模式分析[J]. 生物技术通报, 2025, 41(1): 173-185. |
[4] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
[5] | 吴娟, 武小娟, 王沛捷, 谢锐, 聂虎帅, 李楠, 马艳红. 彩色马铃薯花青素合成相关ERF基因筛选及表达分析[J]. 生物技术通报, 2024, 40(9): 82-91. |
[6] | 宋兵芳, 柳宁, 程新艳, 徐晓斌, 田文茂, 高悦, 毕阳, 王毅. 马铃薯G6PDH基因家族鉴定及其在损伤块茎的表达分析[J]. 生物技术通报, 2024, 40(9): 104-112. |
[7] | 武帅, 辛燕妮, 买春海, 穆晓娅, 王敏, 岳爱琴, 赵晋忠, 吴慎杰, 杜维俊, 王利祥. 大豆GS基因家族全基因组鉴定及胁迫响应分析[J]. 生物技术通报, 2024, 40(8): 63-73. |
[8] | 孙慧琼, 张春来, 王锡亮, 徐宏申, 窦苗苗, 杨博慧, 柴文婷, 赵珊珊, 姜晓东. 藜麦FLS基因家族的鉴定、表达及DNA变异分析[J]. 生物技术通报, 2024, 40(7): 172-182. |
[9] | 刘蓉, 田闵玉, 李光泽, 谭成方, 阮颖, 刘春林. 甘蓝型油菜REVEILLE家族鉴定及诱导表达分析[J]. 生物技术通报, 2024, 40(6): 161-171. |
[10] | 李嘉欣, 李鸿燕, 刘丽娥, 张恬, 周武. 沙棘NRAMP基因家族鉴定及铅胁迫下表达分析[J]. 生物技术通报, 2024, 40(5): 191-202. |
[11] | 潘萍萍, 徐志浩, 张怡雯, 李青, 王忠华. 多花黄精查尔酮合酶PcCHS的原核表达、亚细胞定位及表达分析[J]. 生物技术通报, 2024, 40(5): 280-289. |
[12] | 张娜, 刘梦楠, 屈展帆, 崔祎平, 倪嘉瑶, 王华忠. 小麦烯醇化酶基因ENO2的可变翻译分析和原核表达[J]. 生物技术通报, 2024, 40(5): 112-119. |
[13] | 钟匀, 林春, 刘正杰, 董陈文华, 毛自朝, 李兴玉. 芦笋皂苷合成相关糖基转移酶基因克隆及原核表达分析[J]. 生物技术通报, 2024, 40(4): 255-263. |
[14] | 郝楠, 耿珊, 赵雨薇, 侯智涵, 赵斌, 刘颖超. 拟轮枝镰孢丙氨酸转氨酶FvALT的克隆与表达分析[J]. 生物技术通报, 2024, 40(12): 256-263. |
[15] | 杨冲, 程莎莎, 艾长丰, 赵璇, 刘孟军. 枣ABF/AREB基因家族鉴定及其在果实发育中的表达分析[J]. 生物技术通报, 2024, 40(11): 184-191. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 35
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||