生物技术通报 ›› 2025, Vol. 41 ›› Issue (3): 161-170.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0722
• 研究报告 • 上一篇
王琛1,2(), 刘国梅1,2, 陈畅1, 张晋龙1, 姚琳2, 孙璇2, 杜春芳2(
)
收稿日期:
2024-07-27
出版日期:
2025-03-26
发布日期:
2025-03-20
通讯作者:
杜春芳,女,博士,研究员,研究方向 :油菜遗传育种与推广;E-mail: chunfangdu@163.com作者简介:
王琛,男,硕士研究生,研究方向 :油菜遗传育种;E-mail: 1361744464@qq.com
基金资助:
WANG Chen1,2(), LIU Guo-mei1,2, CHEN Chang1, ZHANG Jin-long1, YAO Lin2, SUN Xuan2, DU Chun-fang2(
)
Received:
2024-07-27
Published:
2025-03-26
Online:
2025-03-20
摘要:
目的 鉴定白菜型油菜(Brassia rapa L.)类胡萝卜素裂解双加氧酶(carotenoid cleavage dioxygenases, CCDs)基因家族成员,深入了解BrCCD家族基因功能及组织表达特性。 方法 利用生物信息学方法,对白菜型油菜CCDs基因家族进行鉴定,构建系统发育树,对其染色体分布、基因结构、保守基序、种内共线性及启动子顺式元件进行分析。结合转录组数据和RT-qPCR技术,分析CCDs基因在不同组织中的表达情况。 结果 在白菜型油菜中鉴定出16个 BrCCD基因,划分为6个亚组,不均匀的分布在8条染色体上;共线性分析发现有7对CCDs基因之间存在共线性关系;顺式作用元件分析表明,CCDs家族成员可能响应生长发育、激素调控、非生物胁迫等多种调控过程。转录组及定量PCR数据分析显示,BrCCD的表达具有组织特异性,BrCCD-L基因在花、叶和种子中表达量较高,BrCCD1b在花中表达量较高,其余多在种子和叶中具有较高的表达量。 结论 白菜型油菜基因组中共鉴定出16个CCDs基因,在不同组织中表现出不同的表达模式。BrCCD-L基因与藏红花属CCD2基因具有极高的相似性,且在不同组织中都显著表达。
王琛, 刘国梅, 陈畅, 张晋龙, 姚琳, 孙璇, 杜春芳. 白菜型油菜CCDs家族全基因组鉴定及表达分析[J]. 生物技术通报, 2025, 41(3): 161-170.
WANG Chen, LIU Guo-mei, CHEN Chang, ZHANG Jin-long, YAO Lin, SUN Xuan, DU Chun-fang. Genome-wide Identification and Expression Analysis of CCDs Family in Brassia rapa L.[J]. Biotechnology Bulletin, 2025, 41(3): 161-170.
引物名称 Primer name | 上游引物 Upstream primer(5′-3′) | 下游引物 Downstream primer(5′-3′) | 产物长度 Product length/bp |
---|---|---|---|
BrCCD8 | CATTGCAGATTGTTGCGAACAC | CCACTCCATCATCTTCATGG | 170 |
BrCCD7 | TCCGGTTATCAACTCATCATGG | AACGTTAAATTCCTCGGGACC | 169 |
BrCCD4a | CCATGGACTATTTGTCAAGGAG | TTTGTTGCCGAAGAAAGTAAGAAGC | 256 |
BrCCD4b | TTAAGGGTTTTAGCGGGACAG | ACGATCGGAACGTCTCTTTG | 320 |
BrCCD-L | GCGGAGAACTGCATAGTTTC | GGACCAACCCTCACAAATTC | 403 |
BrCCD1a | GGCTCTGCAGCATTTTTCTC | GTACCCATCTCCATCAAACC | 376 |
BrCCD1b | TCTCTGTCAATCCTAAACCCTC | GTGAGGGGATCAAACATAACC | 292 |
BrNCED9b | ACGTCGAGATTCCACTTGATG | GAGATGGAAACAGAAGCAATCAGG | 236 |
BrNCED3c | AACAAACCGGTTTATCCAAGAGC | GAGTGATCCTGACTTGGTAAGG | 236 |
BrNCED6 | TTACCACGTGAAGATCAACGG | GTCAAGGTCACGTGTCTTTTTC | 208 |
Brassia rapa-Actin | CATTGCAGATTGTTGCGAACAC | CCACTCCATCATCTTCATGG | 91 |
表1 本研究所用实时荧光定量PCR引物
Table 1 Real-time PCR primers used in this study
引物名称 Primer name | 上游引物 Upstream primer(5′-3′) | 下游引物 Downstream primer(5′-3′) | 产物长度 Product length/bp |
---|---|---|---|
BrCCD8 | CATTGCAGATTGTTGCGAACAC | CCACTCCATCATCTTCATGG | 170 |
BrCCD7 | TCCGGTTATCAACTCATCATGG | AACGTTAAATTCCTCGGGACC | 169 |
BrCCD4a | CCATGGACTATTTGTCAAGGAG | TTTGTTGCCGAAGAAAGTAAGAAGC | 256 |
BrCCD4b | TTAAGGGTTTTAGCGGGACAG | ACGATCGGAACGTCTCTTTG | 320 |
BrCCD-L | GCGGAGAACTGCATAGTTTC | GGACCAACCCTCACAAATTC | 403 |
BrCCD1a | GGCTCTGCAGCATTTTTCTC | GTACCCATCTCCATCAAACC | 376 |
BrCCD1b | TCTCTGTCAATCCTAAACCCTC | GTGAGGGGATCAAACATAACC | 292 |
BrNCED9b | ACGTCGAGATTCCACTTGATG | GAGATGGAAACAGAAGCAATCAGG | 236 |
BrNCED3c | AACAAACCGGTTTATCCAAGAGC | GAGTGATCCTGACTTGGTAAGG | 236 |
BrNCED6 | TTACCACGTGAAGATCAACGG | GTCAAGGTCACGTGTCTTTTTC | 208 |
Brassia rapa-Actin | CATTGCAGATTGTTGCGAACAC | CCACTCCATCATCTTCATGG | 91 |
基因名称 Gene name | 基因ID Gene ID | 亚组 Subgroup | 染色体 Chromosome | 基因长度 Gene length/bp | 外显子数目 Numbei of exons | 蛋白长度 Protein length/aa | 分子量 Molecular wt./kD | 等电点 pI | 亲水性 GRAVY | 亚细胞定位 Subcellular location |
---|---|---|---|---|---|---|---|---|---|---|
BrCCD1a | BraA09g055140.3.5C.2 | CCD1 | A09 | 6 077 | 7 | 273 | 31.35 | 5.27 | -0.342 | 细胞质Cytoplasm |
BrCCD1b | BraA09g055150.3.5C.8 | CCD1 | A09 | 5 488 | 8 | 333 | 38.12 | 5.27 | -0.272 | 细胞质Cytoplasm |
BrCCD4a | BraA01g010600.3.5C.1 | CCD4 | A01 | 2 099 | 1 | 595 | 65.60 | 6.19 | -0.230 | 叶绿体Chloroplasts |
BrCCD4b | BraA08g013940.3.5C.1 | CCD4 | A08 | 3 734 | 4 | 633 | 69.71 | 7.65 | -0.132 | 过氧化物酶体Peroxisome |
BrCCD7 | BraA04g031980.3.5C.1 | CCD7 | A04 | 5 466 | 10 | 668 | 74.77 | 5.86 | -0.381 | 叶绿体Chloroplasts |
BrCCD8 | BraA01g005270.3.5C.1 | CCD8 | A01 | 3 320 | 6 | 568 | 63.89 | 7.12 | -0.345 | 叶绿体Chloroplasts |
BrCCD-L | BraA04g000030.3.5C.6 | CCD-L | A04 | 3 242 | 12 | 536 | 60.77 | 5.91 | -0.235 | 细胞质Cytoplasm |
BrNCED2a | BraA03g048870.3.5C.1 | NCED | A03 | 1 734 | 1 | 577 | 64.31 | 5.50 | -0.261 | 细胞骨架Cytoskeleton |
BrNCED2b | BraA01g009860.3.5C.1 | NCED | A01 | 1 746 | 1 | 581 | 64.50 | 5.37 | -0.214 | 叶绿体Chloroplasts |
BrNCED3a | BraA05g033680.3.5C.1 | NCED | A05 | 2 324 | 1 | 597 | 65.76 | 5.81 | -0.287 | 线粒体Mitochondria |
BrNCED3b | BraA01g038580.3.5C.1 | NCED | A01 | 2 305 | 1 | 598 | 65.76 | 5.57 | -0.275 | 叶绿体Chloroplasts |
BrNCED3c | BraA03g036960.3.5C.1 | NCED | A03 | 2 363 | 1 | 592 | 65.45 | 5.56 | -0.305 | 叶绿体Chloroplasts |
BrNCED5 | BraA09g036480.3.5C.1 | NCED | A09 | 1 767 | 1 | 588 | 65.28 | 5.42 | -0.315 | 叶绿体Chloroplasts |
BrNCED6 | BraA07g009270.3.5C.1 | NCED | A07 | 1 815 | 1 | 604 | 67.20 | 6.16 | -0.312 | 叶绿体Chloroplasts |
BrNCED9a | BraA07g042490.3.5C.1 | NCED | A07 | 2 840 | 2 | 618 | 68.50 | 5.84 | -0.307 | 叶绿体Chloroplasts |
BrNCED9b | BraA02g025460.3.5C.1 | NCED | A02 | 1 764 | 1 | 587 | 65.28 | 6.30 | -0.225 | 叶绿体Chloroplasts |
表2 白菜型油菜CCDs家族基因及其编码蛋白特征
Table 2 Characteristics of CCDs family genes and their encoding proteins in B. rapa L
基因名称 Gene name | 基因ID Gene ID | 亚组 Subgroup | 染色体 Chromosome | 基因长度 Gene length/bp | 外显子数目 Numbei of exons | 蛋白长度 Protein length/aa | 分子量 Molecular wt./kD | 等电点 pI | 亲水性 GRAVY | 亚细胞定位 Subcellular location |
---|---|---|---|---|---|---|---|---|---|---|
BrCCD1a | BraA09g055140.3.5C.2 | CCD1 | A09 | 6 077 | 7 | 273 | 31.35 | 5.27 | -0.342 | 细胞质Cytoplasm |
BrCCD1b | BraA09g055150.3.5C.8 | CCD1 | A09 | 5 488 | 8 | 333 | 38.12 | 5.27 | -0.272 | 细胞质Cytoplasm |
BrCCD4a | BraA01g010600.3.5C.1 | CCD4 | A01 | 2 099 | 1 | 595 | 65.60 | 6.19 | -0.230 | 叶绿体Chloroplasts |
BrCCD4b | BraA08g013940.3.5C.1 | CCD4 | A08 | 3 734 | 4 | 633 | 69.71 | 7.65 | -0.132 | 过氧化物酶体Peroxisome |
BrCCD7 | BraA04g031980.3.5C.1 | CCD7 | A04 | 5 466 | 10 | 668 | 74.77 | 5.86 | -0.381 | 叶绿体Chloroplasts |
BrCCD8 | BraA01g005270.3.5C.1 | CCD8 | A01 | 3 320 | 6 | 568 | 63.89 | 7.12 | -0.345 | 叶绿体Chloroplasts |
BrCCD-L | BraA04g000030.3.5C.6 | CCD-L | A04 | 3 242 | 12 | 536 | 60.77 | 5.91 | -0.235 | 细胞质Cytoplasm |
BrNCED2a | BraA03g048870.3.5C.1 | NCED | A03 | 1 734 | 1 | 577 | 64.31 | 5.50 | -0.261 | 细胞骨架Cytoskeleton |
BrNCED2b | BraA01g009860.3.5C.1 | NCED | A01 | 1 746 | 1 | 581 | 64.50 | 5.37 | -0.214 | 叶绿体Chloroplasts |
BrNCED3a | BraA05g033680.3.5C.1 | NCED | A05 | 2 324 | 1 | 597 | 65.76 | 5.81 | -0.287 | 线粒体Mitochondria |
BrNCED3b | BraA01g038580.3.5C.1 | NCED | A01 | 2 305 | 1 | 598 | 65.76 | 5.57 | -0.275 | 叶绿体Chloroplasts |
BrNCED3c | BraA03g036960.3.5C.1 | NCED | A03 | 2 363 | 1 | 592 | 65.45 | 5.56 | -0.305 | 叶绿体Chloroplasts |
BrNCED5 | BraA09g036480.3.5C.1 | NCED | A09 | 1 767 | 1 | 588 | 65.28 | 5.42 | -0.315 | 叶绿体Chloroplasts |
BrNCED6 | BraA07g009270.3.5C.1 | NCED | A07 | 1 815 | 1 | 604 | 67.20 | 6.16 | -0.312 | 叶绿体Chloroplasts |
BrNCED9a | BraA07g042490.3.5C.1 | NCED | A07 | 2 840 | 2 | 618 | 68.50 | 5.84 | -0.307 | 叶绿体Chloroplasts |
BrNCED9b | BraA02g025460.3.5C.1 | NCED | A02 | 1 764 | 1 | 587 | 65.28 | 6.30 | -0.225 | 叶绿体Chloroplasts |
图2 白菜型油菜与其他植物CCDs蛋白的系统进化树Bn:甘蓝型油菜(Brassica napus L.); Br:白菜型油菜(Brassica rapa L.); At:拟南芥(Arabidopsis thaliana L.); Cs:藏红花(Crocus sativus L.); Cc:金黄番红花(Crocus chrysanthus Herb.); Cang:高加索番红花(Crocus angustifolius)
Fig. 2 Phylogenetic tree of CCDs proteins in B. rapa L. and other plants
图7 基于转录组数据白菜型油菜CCDs基因家族的组织表达红色表示上调表达,蓝色表示下调表达,图中数值为相对表达量(对照组为‘天油7号’)。F:花;Se:种子;L:叶;R:根
Fig. 7 Tissue expression of CCDs gene family in B. rapa L. based on transcriptome dataRed indicates up-regulated expression, blue indicates down-regulated expression, and the values in the figure are relative expressions(The control group was 'Tianyou No. 7'). F: Flower. Se: Seed. L: Leaf. R: Root
1 | Zhang J, He LH, Dong JJ, et al. Integrated metabolic and transcriptional analysis reveals the role of carotenoid cleavage dioxygenase 4 (IbCCD4) in carotenoid accumulation in sweetpotato tuberous roots [J]. Biotechnol Biofuels Bioprod, 2023, 16(1): 45. |
2 | 张建英. 欧李类胡萝卜素代谢相关基因CCD家族鉴定及原核表达分析 [D]. 太谷: 山西农业大学, 2021. |
Zhang JY. Identification and prokaryotic expression analysis of CCD family of carotenoid metabolism-related genes in Prunus humilis [D]. Taigu: Shanxi Agricultural University, 2021. | |
3 | Ahrazem O, Gómez-Gómez L, Rodrigo MJ, et al. Carotenoid cleavage oxygenases from microbes and photosynthetic organisms: features and functions [J]. Int J Mol Sci, 2016, 17(11): 1781. |
4 | Schwartz SH, Tan BC, Gage DA, et al. Specific oxidative cleavage of carotenoids by VP14 of maize [J]. Science, 1997, 276(5320): 1872-1874. |
5 | Kiefer C, Hessel S, Lampert JM, et al. Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A [J]. J Biol Chem, 2001, 276(17): 14110-14116. |
6 | Auldridge ME, Block A, Vogel JT, et al. Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family [J]. Plant J, 2006, 45(6): 982-993. |
7 | Sun ZK, Hans J, Walter MH, et al. Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions [J]. Planta, 2008, 228(5): 789-801. |
8 | Tan BC, Joseph LM, Deng WT, et al. Molecular characterization of the Arabidopsis 9-Cis epoxycarotenoid dioxygenase gene family [J]. Plant J, 2003, 35(1): 44-56. |
9 | 由淑贞, 杨洪强. 类胡萝卜素裂解双加氧酶及其生理功能 [J]. 西北植物学报, 2008, 28(3): 630-637. |
You SZ, Yang HQ. Carotenoid cleavage dioxygenases and their physiological function [J]. Acta Bot Boreali Occidentalia Sin, 2008, 28(3): 630-637. | |
10 | 王志文, 杨宁宁, 张晨, 等. 莲类胡萝卜素裂解双加氧酶4(NnCCD4)基因家族鉴定与功能分析 [J]. 核农学报, 2023, 37(10): 1938-1946. |
Wang ZW, Yang NN, Zhang C, et al. Identification and functional analysis of NnCCD4 gene family from Nelumbo nucifera [J]. J Nucl Agric Sci, 2023, 37(10): 1938-1946. | |
11 | Ureshino K, Nakayama M, Miyajima I. Contribution made by the carotenoid cleavage dioxygenase 4 gene to yellow colour fade in Azalea petals [J]. Euphytica, 2016, 207(2): 401-417. |
12 | Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones [J]. Nature, 2008, 455(7210): 195-200. |
13 | Pasare SA, Ducreux LJM, Morris WL, et al. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and Tuber development [J]. New Phytol, 2013, 198(4): 1108-1120. |
14 | Kulkarni KP, Vishwakarma C, Sahoo SP, et al. A substitution mutation in OsCCD7 cosegregates with dwarf and increased tillering phenotype in rice [J]. J Genet, 2014, 93(2): 389-401. |
15 | Schwartz SH, Tan BC, McCarty DR, et al. Substrate specificity and kinetics for VP14, a carotenoid cleavage dioxygenase in the ABA biosynthetic pathway [J]. Biochim Biophys Acta, 2003, 1619(1): 9-14. |
16 | Thompson AJ, Jackson AC, Symonds RC, et al. Ectopic expression of a tomato 9-Cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid [J]. Plant J, 2000, 23(3): 363-374. |
17 | Tong SM, Xi HX, Ai KJ, et al. Overexpression of wheat TaNCED gene in Arabidopsis enhances tolerance to drought stress and delays seed germination [J]. Biologia Plant, 2017, 61(1): 64-72. |
18 | Zhiqiang N, Liu GS, Tinging S, et al. Cloning of NCED3 gene in Nicotiana tabacum and analysis of its drought stress-induced expression [J]. Acta Tabacaria Sinica, 2015, 21(3):100-106. |
19 | 陈敏氡, 王彬, 李永平, 等. 西葫芦CCD基因家族鉴定及其在果实发育中的表达 [J]. 西北植物学报, 2022, 42(7): 1124-1132. |
Chen MD, Wang B, Li YP, et al. Genome-wide identification and expression analysis of CCD gene family in fruit development of zucchini [J]. Acta Bot Boreali Occidentalia Sin, 2022, 42(7): 1124-1132. | |
20 | 吴转娣, 刘新龙, 刘家勇, 等. 甘蔗独脚金内酯生物合成基因ScCCD8的克隆与表达分析[J]. 中国农业科学, 2016, 49(14): 2662-2674. |
Wu ZD, Liu XL, Liu JY, et al. Cloning and expression analysis of strigolactones biosynthesis related gene ScCCD8 in sugarcane[J]. Scientia Agricultura Sinica, 2016, 49(14): 2662-2674. | |
21 | 李琼琼, 张洁, 邓宇, 等. 大豆GmNCED1基因的克隆及表达模式分析[J]. 中国油料作物学报, 2014, 36(4): 455-460. |
Li QQ, Zhang J, Deng Y, et al. Cloning and expression analysis of GmNCED1 from Glycine max [J]. Chinese Journal of Oil Crop Sciences, 2014, 36(4): 455-460. | |
22 | 傅秀敏, 唐劲驰, 杨子银. 茶叶类胡萝卜素合成、代谢调控研究进展 [J]. 广东农业科学, 2021, 48(5): 18-27. |
Fu XM, Tang JC, Yang ZY. Research progress in biosynthesis and metabolism regulation of carotenoids in tea plants [J]. Guangdong Agric Sci, 2021, 48(5): 18-27. | |
23 | Zhao XL, Yang YL, Xia HX, et al. Genome-wide analysis of the carotenoid cleavage dioxygenases gene family in Forsythia suspensa: expression profile and cold and drought stress responses [J]. Front Plant Sci, 2022, 13: 998911. |
24 | 房强. 香雪兰类胡萝卜素裂解双加氧酶(FhCCDs)基因克隆与功能鉴定 [D]. 长春: 东北师范大学, 2020. |
Fang Q. Cloning and functional identification of carotenoid-cleaving dioxygenase (FhCCDs) gene from Ceylon [D]. Changchun: Northeast Normal University, 2020. | |
25 | 陈鹏臻. 桂花花瓣的类胡萝卜素代谢途径及其调控研究 [D]. 开封: 河南大学, 2018. |
Chen PZ. Study on carotenoid metabolic pathway and regulation of Osmanthus fragrans petals [D]. Kaifeng: Henan University, 2018. | |
26 | Huang FC, Molnár P, Schwab W. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes [J]. J Exp Bot, 2009, 60(11): 3011-3022. |
27 | Campbell R, Ducreux LJM, Morris WL, et al. The metabolic and developmental roles of carotenoid cleavage dioxygenase4 from potato [J]. Plant Physiol, 2010, 154(2): 656-664. |
28 | Zhang M, Leng P, Zhang GL, et al. Cloning and functional analysis of 9-Cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits [J]. J Plant Physiol, 2009, 166(12): 1241-1252. |
29 | Zhang B, Liu C, Wang YQ, et al. Disruption of a carotenoid cleavage dioxygenase 4 gene converts flower colour from white to yellow in Brassica species [J]. New Phytol, 2015, 206(4): 1513-1526. |
30 | Zhou XT, Jia LD, Duan MZ, et al. Genome-wide identification and expression profiling of the carotenoid cleavage dioxygenase (CCD) gene family in Brassica napus L [J]. PLoS One, 2020, 15(9): e0238179. |
31 | Kim Y, Hwang I, Jung HJ, et al. Genome-wide classification and abiotic stress-responsive expression profiling of carotenoid oxygenase genes in Brassica rapa and Brassica oleracea [J]. J Plant Growth Regul, 2016, 35(1): 202-214. |
32 | Kloer DP, Schulz GE. Structural and biological aspects of carotenoid cleavage [J]. Cell Mol Life Sci, 2006, 63(19-20): 2291-2303. |
33 | 滕林佐. 桂花类胡萝卜素裂解关键基因CCD1的克隆及功能研究 [D]. 长沙: 中南林业科技大学, 2019. |
Teng LZ. Cloning and functional study of CCD1 a key gene for carotenoid cleavage in Osmanthus fragrans [D]. Changsha: Central South University of Forestry & Technology, 2019. | |
34 | 付鸿博, 李杰, 杨永超. 石榴CCD基因家族的鉴定与分析 [J/ OL]. 分子植物育种, 2021:1-12. |
Fu HB, Li J, Yang YC. Identification and analysis of CCD gene family in pomegranate [J/OL]. Molecular Plant Breeding, 2021:1-12. | |
35 | 张亚飞, 彭洁, 朱延松, 等. 柑橘CCD基因家族鉴定及CcCCD4a对果肉颜色的影响 [J]. 中国农业科学, 2020, 53(9): 1874-1889. |
Zhang YF, Peng J, Zhu YS, et al. Genome wide identification of CCD gene family in Citrus and effect of CcCCD4a on the color of Citrus flesh [J]. Sci Agric Sin, 2020, 53(9): 1874-1889. | |
36 | 徐胤, 胡秋涛, 侯丹, 等. 毛竹NCED基因家族的全基因组鉴定及表达分析 [J]. 农业生物技术学报, 2021, 29(6): 1061-1072. |
Xu Y, Hu QT, Hou D, et al. Genome-wide identification and expression analysis of NCED gene family in Phyllostachys edulis [J]. J Agric Biotechnol, 2021, 29(6): 1061-1072. | |
37 | Ahrazem O, Rubio-Moraga A, Argandoña-Picazo J, et al. Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron [J]. Plant Mol Biol, 2016, 91(3): 355-374. |
38 | Lashbrooke JG, Young PR, Dockrall SJ, et al. Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family [J]. BMC Plant Biol, 2013, 13: 156. |
39 | Watanabe K, Oda-Yamamizo C, Sage-Ono K, et al. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4 [J]. Transgenic Res, 2018, 27(1): 25-38. |
40 | 张鸿远. 甘蓝型油菜BnaCCD4基因突变体的创制及功能研究 [D]. 武汉: 华中农业大学,2023:1-74. |
Zhang HY. Creation and function of BnaCCD4 gene mutant in Brassica napus [D]. Wuhan: Huazhong Agricultural University,2023:1-74. | |
41 | 徐学中, 汪婷, 万旺, 等. 水稻ABA生物合成基因OsNCED3响应干旱胁迫 [J]. 作物学报, 2018, 44(1): 24-31. |
Xu XZ, Wang T, Wan W, et al. ABA biosynthesis gene OsNCED3 confers drought stress tolerance in rice [J]. Acta Agron Sin, 2018, 44(1): 24-31. | |
42 | Xu PP, Cai WM. Functional characterization of the BnNCED3 gene in Brassica napus [J]. Plant Sci, 2017, 256: 16-24. |
[1] | 覃悦, 杨妍, 张磊, 卢丽丽, 李先平, 蒋伟. 二倍体和四倍体马铃薯StGAox基因鉴定与比较分析[J]. 生物技术通报, 2025, 41(3): 146-160. |
[2] | 马天意, 许家佳, 路文婧, 吴艳, 沙伟, 张梅娟, 彭疑芳. ‘金小童’大白菜BrcGASA3基因在盐碱胁迫下的表达分析及抗性鉴定[J]. 生物技术通报, 2025, 41(2): 127-138. |
[3] | 许圆梦, 毛娇, 王梦瑶, 王数, 任江陵, 刘宇涵, 刘思辰, 乔治军, 王瑞云, 曹晓宁. 糜子PmDEP1和PmEP3基因的克隆与表达特征分析[J]. 生物技术通报, 2025, 41(2): 150-162. |
[4] | 贾子健, 王宝强, 陈立飞, 王义真, 魏小红, 赵颖. 响应NO的藜麦CHX基因家族在盐碱胁迫下的表达模式[J]. 生物技术通报, 2025, 41(2): 163-174. |
[5] | 钱政毅, 吴绍芳, 曹舒怡, 宋雅欣, 潘鑫峰, 李兆伟, 范凯. 睡莲NAC转录因子的鉴定及其表达分析[J]. 生物技术通报, 2025, 41(2): 234-247. |
[6] | 黄颖, 遇文婧, 刘雪峰, 刁桂萍. 山新杨谷胱甘肽转移酶基因的生物信息学与表达模式分析[J]. 生物技术通报, 2025, 41(2): 248-256. |
[7] | 向春繁, 李勒松, 王娟, 梁艳丽, 杨生超, 栗孟飞, 赵艳. 当归肉桂醇脱氢酶AsCAD功能鉴定及表达分析[J]. 生物技术通报, 2025, 41(2): 295-308. |
[8] | 李明, 刘祥宇, 王益娜, 和四梅, 沙本才. 紫金龙异紫堇定生物合成相关6-OMT基因克隆与功能表征[J]. 生物技术通报, 2025, 41(2): 309-320. |
[9] | 葛仕杰, 刘怡德, 张华东, 宁强, 朱展望, 王书平, 刘易科. 小麦蛋白质二硫键异构酶基因家族的鉴定与表达[J]. 生物技术通报, 2025, 41(2): 85-96. |
[10] | 李禹欣, 李苗, 杜晓芬, 韩康妮, 连世超, 王军. 谷子SiSAP基因家族的鉴定与表达分析[J]. 生物技术通报, 2025, 41(1): 143-156. |
[11] | 王子傲, 田瑞, 崔永梅, 白羿雄, 姚晓华, 安立昆, 吴昆仑. 青稞HvnJAZ4的生物信息学和表达模式分析[J]. 生物技术通报, 2025, 41(1): 173-185. |
[12] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
[13] | 吴慧琴, 王延宏, 刘涵, 司政, 刘雪晴, 王静, 阳宜, 成妍. 辣椒UGT基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 198-211. |
[14] | 满全财, 孟姿诺, 李伟, 蔡心汝, 苏润东, 付长青, 高顺娟, 崔江慧. 马铃薯AQP基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 51-63. |
[15] | 吴娟, 武小娟, 王沛捷, 谢锐, 聂虎帅, 李楠, 马艳红. 彩色马铃薯花青素合成相关ERF基因筛选及表达分析[J]. 生物技术通报, 2024, 40(9): 82-91. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 36
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||