生物技术通报 ›› 2026, Vol. 42 ›› Issue (9): 1-13.doi: 10.13560/j.cnki.biotech.bull.1985.2025-1037

• 综述与专论 •    

植物表皮毛发育分子调控机制研究进展

秦子璐(), 孙海燕, 陈赢男()   

  1. 林木遗传育种国家重点实验室 现代南方林业协同创新中心 林木遗传与生物技术教育部重点实验室 南京林业大学林草学院,南京 210037
  • 收稿日期:2025-09-26 出版日期:2026-02-09 发布日期:2026-02-09
  • 通讯作者: 陈赢男,女,博士,教授,研究方向 :林木遗传育种;E-mail: chenyingnan@njfu.edu.cn
  • 作者简介:秦子璐,女,博士研究生,研究方向 :林木遗传育种;E-mail: qinzilu@njfu.edu.cn
  • 基金资助:
    农业生物育种重大项目(2022ZD0401501);国家自然基金面上项目(32471900);江苏省研究生科研与实践创新计划项目(KYCX25_1329)

Research Progress in the Molecular Regulatory Mechanism of Plant Trichome Development

QIN Zi-lu(), SUN Hai-yan, CHEN Ying-nan()   

  1. State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037
  • Received:2025-09-26 Published:2026-02-09 Online:2026-02-09

摘要:

植物表皮毛是植物表皮细胞分化形成的特化突起结构,作为植物长期适应环境的重要进化特征,其在抵御生物与非生物胁迫及形成棉纤维、茶叶次生代谢物等产物中具有关键作用。本文系统综述了草本植物(拟南芥、番茄、棉花及水稻)和木本植物(杨树、茶树及桃树)表皮毛发育分子调控机制的研究进展。在拟南芥中,MYB-bHLH-WD40(MBW)转录复合体构成调控表皮毛起始与形态建成的核心保守模块,通过正负反馈环路实现精准调控。番茄中则呈现出以HD-Zip转录因子为主导的、更为复杂的调控网络。在棉纤维发育过程中,R2R3 MYB等转录因子展现出关键作用及功能特异性分化。作为单子叶植物,水稻表皮毛发育形成了区别于双子叶植物的独特调控网络。杨树、茶树等木本植物仍存在部分保守MBW核心调控机制,而桃果实表皮毛发育则演化出不依赖完整MBW复合体的新路径。本文通过比较分析不同物种表皮毛调控网络的保守性与特异性,为揭示植物表皮毛发育的分子进化机制提供了理论依据,并为作物抗逆性与经济性状的分子育种改良提供潜在靶点。

关键词: 植物表皮毛, 分子调控, 转录因子, MBW复合体

Abstract:

Plant trichomes are specialized protrusive structures differentiated from plant epidermal cells. As crucial evolutionary features for plants to adapt to the environment over the long term, they play key roles in resisting biotic and abiotic stresses, as well as in the formation of products such as cotton fibers and secondary metabolites in tea leaves. This article systematically reviews the research progress on the molecular regulatory mechanisms of trichome development in herbaceous plants (Arabidopsis thaliana, tomato (Solanum lycopersicum), cotton (Gossypium), and rice (Oryza sativa)) and woody plants (poplar (Populus tremula × P. alba clone), tea (Camellia sinensis), and peach (Prunus persica)). In A. thaliana, the MYB-bHLH-WD40 (MBW) transcription complex constitutes the core conserved module regulating trichome initiation and morphogenesis, achieving precise regulation through positive and negative feedback loops. In tomato, a more complex regulatory network dominated by HD-Zip transcription factors is present. During cotton fiber development, transcription factors such as R2R3 MYB play key roles and functional specific differentiation. As a monocotyledon, the development of trichomes in rice has formed a unique regulatory network that is distinct from that in dicotyledons. Studies on woody plants have shown that poplar and tea still retain part of the conserved MBW core regulatory mechanism, while a novel pathway independent of the complete MBW complex has evolved in the trichome development of peach fruits. By comparatively analyzing the conservation and specificity of trichome regulatory networks across different species, this article provides a theoretical basis for revealing the molecular evolutionary mechanism of plant trichome development and offers potential targets for the molecular breeding improvement of crop stress resistance and economic traits.

Key words: plant trichomes, molecular regulation, transcription factors, MBW complex